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ABSTRACT

Tension modulated nonlinearities for the modeling of string
instruments are well known to increase the quality of synthe-
sized sounds significantly. These models consider the nonlin-
ear feedback from the string’s deflection to one of its physical
parameters, the string tension. Obviously this effect occurs
for two dimensional models, drums or plates for instance,
too, however so far only non real-time implementations are
available. Therefore in this paper a new approach is pre-
sented, where the functional transformation method (FTM) is
applied. The mathematical model of a dispersive and damped
membrane is set up including an additional term for the ten-
sion modulated nonlinearity. Using some slight simplifica-
tion this model is solved with the FTM and, thanks to the
scalability of the FTM, implemented in real-time.

1. INTRODUCTION

Physical modeling is one of the major current developments
for digital sound synthesis, which becomes more and more
part of commercial products (so far mainly in hybrid forms).
Especially for the reproduction of musical instruments with
strong nonlinearities physical modeling is advantageous, as
such instruments sound different for every level of sound in-
tensity they are played with.

In this scope one typical and common effect for string
instruments are tension modulated nonlinearities (see [1]).
The tension of the string is assumed to be a superposition
of the string’s tension in equilibrium plus an additional non-
linear term, that is a function of the string’s deflection. For
strings there are already several implementations for a num-
ber of different underlying modeling techniques, as for the
digital waveguide (DWG) method [2], the functional trans-
formation method (FTM) [3], and finite difference time do-
main (FDTD) schemes (see [4] for instance). All of them
enhance the quality of the synthesized sounds significantly.
Certainly the same principle can be used for sound synthesis
of two-dimensional objects, what increases the sound qual-
ity all the more, as these nonlinear effects are often used on
purpose by the musician (the drummer for instance).

Therefore a novel algorithm based on the FTM is pre-
sented in this paper. Thanks to the generality of the FTM it is
a straightforward extension respectively combination of prior
work on tension modulated nonlinear strings in [5] and linear
models of drums in [6]. In detail the model of a rectangular,
dispersive, and damped membrane with additional solution-
dependent surface tension is formulated in form of a partial
differential equation (PDE). This PDE is solved by means

of transfer function models with the FTM, consequently ac-
counting for the nonlinear term. After discretization and in-
verse transformation of the transfer function model, a dis-
crete realization is achieved, that thanks to the scalability of
the FTM can run in real-time on current hardware.

The paper is organized as follows: in section 2 the ba-
sic physical properties are discussed and the nonlinear model
and some simplifying assumptions are introduced. After that
the FTM is applied on the resulting PDE in section 3 yield-
ing a discrete implementation. The results of this implemen-
tation are presented in section 4 and section 5 concludes this
paper.

2. NONLINEAR SURFACE TENSION

A schematic of the model under consideration can be seen
in figure 1. A thin rectangular membrane is defined on the
region V , bounded by ∂V . The length along the x1 axis is
L1 and along the x2 axis L2. The deflection is abbreviated by
y = y(x1,x2, t). The membrane is supported at the boundary
∂V with a certain surface tension T0 in equilibrium.
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Figure 1: Schematic plot of a thin rectangular object defined
on the region V with the boundary region ∂V .

The derivation of the basic physical principles is a com-
bination of the physical principles of linear membranes
(see [7]) and nonlinear strings (see [5]). First a small sec-
tion (denoted by the upper index S) of the membrane has to
fulfill Hook’s law, what introduces Poisson’s ratio p for two-
dimensional systems:

ε1 =
∆l1
lS
1

=
T1

E
− p

T2

E
(1)

ε2 =
∆l2
lS
2

=
T2

E
− p

T1

E
. (2)

Note, that the subscripts (1 or 2) denote the spatial dimension
(x1 or x2) and ∆li denotes the elongation in xi caused by the



surface tension. Thus T1 is the membranes surface tension
in x1 direction, that causes the elongation ∆l1. E is Young’s
modulus.

The next step is specific for multidimensional systems:
we have to relate the elongation in x1 and x2 with the change
of the surface area ∆A. For small segments this is done by

∆AS = AS−AS
0 = lS

1 ∆l2 + ∆l1lS
2 + ∆l1∆l2 , (3)

there AS
0 = lS

1 lS
2 is the original surface area of the segment

at equilibrium. To achieve a relation for the complete sur-
face area A, we have to integrate over all infinitesimal small
surface segments
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The following steps, that finally lead to an expression for the
nonlinear surface tension TNL(y), are based on three assump-
tion (according to [1, 2, 5]) that simplify the derivation con-
siderably:
1. The elongation in both dimensions is assumed to be small

compared to the original length, ∆li� lS
i , so that an ap-

proximation by a Taylor series is possible, both in equa-
tion (4) and in equation (3).

2. The surface tensions T1 and T2 in equation (1) and (2) are
assumed to be constant throughout the complete area.

3. Furthermore these tensions are assumed to be equal T1 =
T2. This assumption presumes an uniform clamping,
what holds for most drums.

Using these assumptions we can derive from (1) - (4) the
overall nonlinear surface tension to be

TNL(y) = T0 + T1(y) =

= T0 +
E

2(1− p)

1
2L1L2

·
L2∫

0

L1∫

0

((
∂y
∂x1

)2

+

+

(
∂y
∂x2

)2

+
1
2

(
∂y
∂x1

)2( ∂y
∂x2

)2
)

dx1dx2 . (5)

The remaining steps towards the desired PDE include the
equation of motion, an equation of bending, and the intro-
duction of damping terms. Details on this derivation and the
associated physical parameters can be found in [7] or [8] and
are not described here. Important in this scope is, that the
nonlinear part of the surface tension T1(y) simply produces
one additional term in the equation:

− T1(y)

σ
∇2y− T0

σ
∇2y + S4∇4y + d1ẏ−d3∇2ẏ + ÿ =

fe(x1,x2, t) , (6)

where ẏ denotes first order temporal derivation and the
Nabla-operator ∇ denotes first order spatial derivation;
fe(x1,x2, t) is an arbitrary excitation force.

3. APPLICATION OF THE FTM

The application of the FTM follows completely the proce-
dure described in [6] or [8], thereby the nonlinear term in
equation (6) is regarded as an additional excitation. In par-
ticular the eigenvalue problem of the FTM is created and
solved completely disregarding the nonlinear term. In result,
eigenvalues and transformation kernel are identical to the lin-
ear model as described in [6] yielding the transfer function
model
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with its corresponding eigenfrequencies

βµ = σµ + jωµ (8)
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Note, that due to the finite dimensions of the region V , only
discrete values are adopted for the eigenfrequencies βµ . This
fact is indicated by the integer values µ1,µ2 ∈ N0 and µ =

µ(µ1,µ2) as an arbitrary but invertible mapping of N2
0↔N0.

Nevertheless, both integral transformations that yielded
the transfer function model (7) have to be applied on the non-
linear term T1(y)∇2y too. This includes the Laplace trans-
formation (denoted by Ȳ = L {ȳ}) and the Sturm-Liouville
transformation (denoted by ȳ = T {y})
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Fortunately it is possible to simplify the evaluation of (9) sig-
nificantly by

b̄(ηµ ,y, ȳ) := T
{
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achieve equation (10) is quite complex and similar to the pro-
cedure described in [5]and therefore not performed here.

To achieve a discrete implementation the transfer func-
tion model (7) is discretized with the impulse invariant trans-
formation, and transformed back, both in space (with the
inverse Sturm-Liouville transformation) and in time (with
the inverse Laplace transformation). The nonlinear term
B̄(ηµ ,Y,Ȳ ) thereby is treated as an external excitation func-
tion which is known to the algorithm.

Again the procedure is quite similar to [5] and not de-
scribed in detail here. The crucial point is, that due to the
shifting theorem of the impulse invariant transformation only
past values of b̄d(ηµ ,yd, ȳd) are needed for the evaluation of
the actual output yd(x1,x2,k) (k denotes the discrete time and
upper d denotes discrete time values). Values that are de-
layed by exactly one sample. Furthermore, as T1(y) is as-
sumed to be constant over the complete area b̄d(ηµ ,yd, ȳd)



is also constant over the complete area (see equation (10)).
As the Sturm-Liouville transformation from yd(x1,x2,k) to
ȳd(µ1,µ2,k) is a one to one mapping, b̄d(ηµ ,y, ȳ) can be at-
tained by ȳd(µ1,µ2,k) alone:
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These considerations can also be proven by insertion of all
known values into b̄d(ηµ ,y, ȳ) and some tedious reformu-
lation process which makes use of the orthogonality of the
transformation kernels of the Sturm-Liouville transforma-
tion. Finally it results in

b̄d(ηµ ,y, ȳ) = η2
µ ȳd(µ1,µ2,k)
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where N1 and N2 are finite integers, that determine the order
in each spatial dimension and whose product is the absolute
number of harmonics N = N1 ·N2.

The complete implementation of an oscillating mem-
brane with tension modulated nonlinearity can be seen in
figure 2. Its structure is almost identical to the linear im-
plementation, proposed in [3], only the double bounded box
is added. In detail one can see several second order recursive
systems, which implement the second order transfer function
in equation (7). The constant c1(µ) and c2(µ) result from
the shifting theorem of the inverse Z-transformation and can
be calculated by

c1(µ) = 2 · e−σµ T · cos(ωµ T )

c2(µ) = −e−2σµ T ,

where T is the sampling interval of the impulse invariant dis-
cretization.

These recursive systems produce the Sturm-Liouville
transformed outcome ȳd(µ ,k). The inverse Sturm-Liouville
transformation is simply the summation over all eigenfre-
quencies βµ (and consequently µ) weighted by the transfor-
mation kernel K(x1,x2,µ) (which can be given analytically
in this scenario, see [6] for details). Important in this scope
is the excitation of the recursive systems. On the one hand
(as also denoted in equation (7) ) the system is excited by the
discretized Sturm-Liouville transformed excitation function
f̄ d
e (µ ,k), which can be achieved by (again, see [6])

f̄ d
e (µ ,k) = e−σµ T · sin(ωµ T )
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One the other hand it is also excited by the nonlinear term
1
σ b̄(ηµ ,y, ȳ) which is calculated by equation (11). In figure 2
this term is included in the double bounded box, where (·) is

an abbreviation for the discrete Sturm-Liouville transformed
outcome ȳd(µ ,k) and the constants χ(µ) follow from equa-
tion (11) to
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Figure 2: Block diagram of the implementation of an os-
cillating membrane with tension modulated nonlinearities.
The constants c1(µ) and c2(µ) are identical to the linear
implementation described in [6], the transformation kernel
K(x1,x2,µ) too. The constants χ(µ) are given in equa-
tion (12). All signals are function of discrete time k, what
is omitted for concise notation. The nonlinear term in the
double bounded box is a function of ȳd(µ ,k) (denoted by the
dots).

4. RESULTS

Simulation results can be seen in figure 3. The upper plots are
simulations without the nonlinear terms and the lower plots
includes the nonlinearity. The simulations on the right were
excited with a five times stronger excitation force compared
to the simulations on the left.

It can be clearly seen, that the first few microseconds af-
ter the excitation are identical in all plots. However, the de-
flection of the nonlinear models is limited by an increasing,
backward driving surface tension. This effect is even more
impressive in the right hand side plots in figure 3, where the
results of the linear model are obviously just scaled, while
the nonlinear effect in the lower right plot limits the deflec-
tion below 0.3mm.

However, one major benefit of the approach is the scal-
ability. The proposed structure in figure 2 can be easily
scaled down by limiting the number of calculated modes
N. An upper limit for the number of modes is obviously
the Nyquist frequency, however less modes are also possible,
mostly without noticeable differences. On current hardware
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Figure 3: Simulation of a membrane’s deflection after it was excited by a band-limited impulse. The upper plots are the
simulations of a linear model without tension modulation. The lower plots are the simulations of the same model with tension
modulated nonlinearities. The simulations on the right were excited five times stronger.

over 1000 harmonics can be calculated in real-time at full
audio sample rate (44100 Hz) without any algorithmic delay.
This number can cover all audible harmonics for wooden and
metal plates. However for typical kettle drum parameters it
only reaches up to 1 or 2 kHz. Nevertheless, one easily can
take advantage of psychoacoustic effects by skipping low ex-
cited modes and thus obtain a satisfactory real-time sound
output.

5. CONCLUSIONS

In this paper a new approach for sound synthesis with nonlin-
ear two-dimensional physical models was presented. In do-
ing so, the well known approach of tension modulated non-
linearities for one-dimensional string models was extended
to two-dimensional membranes. A few simplifications on
the model were introduced to keep the evaluation of the non-
linearity practicable. The model was solved in the frequency
domain with the functional transformation method (FTM),
whereas the nonlinear term was treated as an additional exci-
tation. According to the procedure of the FTM, the transfer
function was discretized and transformed back, both in time
and space frequency domain yielding a discrete system for
the linear model. The nonlinear term was reformulated to
minimize the computational effort for its evaluation and it
was introduced as an additional block in the discrete system
of the linear part. The complete structure was implemented
on a common personal computer and with some mild restric-
tions was proven to run in real-time.

This work was supported by the EU project ALMA, IST-
2001-33059.
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