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ABSTRACT 
 
Blind Source Separation (BSS) is a general signal 
processing method, which consists in recovering, 
from a set of observations recorded by sensors, the 
contributions of different physical sources 
independently from the propagation medium and 
without any a priori knowledge of the sources [4].  
All BSS algorithms are based on the assumption that 
the sources are statistically independent and 
generally stationary processes. But, real sources are 
not necessarily stationary processes. In this paper, we 
are considering the mixture of two sources. The first 
one is cyclostationary and the second is a stationary 
process. Our aim is to elaborate a new BSS 
algorithm able to restore the cyclostationary process 
by using only the knowledge of its fundamental 
cyclic frequency 

oα  and the second order statistical 

properties of the sources. 
 

1. INTRODUCTION 
 
Blind Source Separation (BSS) is a promising 
technique for signal processing and data analysis that 
allows the recovery of unknown signals (called 
sources) from observed signals mixed by an 
unknown propagation medium. 
Figure 1 represents a BSS general scheme. For 
instantaneous mixtures, the general model becomes : 
 
                               X(k) = A S(k)                            (1) 
 
where both the mixing matrix A and the sources S 
are unknown. 
In this work, we elaborate a new Blind Source 
Separation (BSS) algorithm for a linear  

 
 
 
instantaneous model de-mixing signals from two 
unknown sources received by two sensors. First, we 
apply the widely used whitening step of the mixed 
sources (matrix W) [2]. The non-standard part is the 
second step which uses the knowledge of the 
fundamental cyclic frequency of the cyclostationary 
process and the second order statistical properties of 
the sources in order to find the optimal rotation of the 
de-mixing matrix V. 
In our simulations, the first source corresponds to a 
simple cyclostationary process, 

)2cos(.)()(1 tftatS sπ= , a sinusoid modulated by a 

random amplitude. The second source is a random 
process (stationary process). We estimate the second 
order statistical coefficients involved in the criterion 
used in our algorithm. After separation, the two 
‘unknown’ sources are successfully restored. 

 
Figure 1 : BSS general scheme 

 
2. ASYMMETRIC CRITERION 

 
The idea behind restoring our source of interest, i.e., 
the cyclostationary process, is to maximize the 
cyclostationary contribution of the first estimated 
source Z1 and the stationary contribution of the second 
estimated source Z2, using just the second order 
properties of the sources and a combined criterion. 

 
3. CHARATERIZATION OF THE 
CYCLOSTATIONARY PROCESS 
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Let us denote by s(t) a cyclostationary process and 
by 

oα  its fundamental cyclic frequency. Its 

autocorrelation ),( τtRs
 is a periodic function in t 

and ooT α/1=  is the fundamental cyclic period. 

We compute the nth coefficient of the Fourier Series 
Decomposition : 
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If  n  is different from zero, then : 
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One can deduce that if n is equal to zero, then :  
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RKK o ∈=)0( , the mean square value.  

 
4. CHARATERIZATION OF THE 

STATIONARY PROCESS 
 

Note that s’(t) is a stationary process. 
We deduce that for different non zero values of n : 
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and if  n  is equal to zero : 
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5. COMBINED CRITERION 

 
For an instantaneous linear model the estimate 
source vector Z(t)  is a linear combination of the 
unknown sources : 
                       Z(t) = a S1(t)+ b S2(t)                       (7) 
where S1(t) is our source of interest : the 
cyclostationary process and S2(t) the stationary 
process. 

Computing )(ταon
zR  for different non zero values 

of  n  leads to : 
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Since S2 is a stationary process, one obtains : 
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As the sources are assumed to be statistically 
independent and the second source to be centred, 
then : 
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We conclude that : 
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We denote by C1 the first criterion, 

                      0,)(1 ≠= nRC on
z τα                  (12) 

which depends only on the contribution of the 
cyclostationary source. 

   If n=0 , then )(τo
zR  equals : 
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As  S1  is a cyclostationary process : 
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and for the same hypotheses about the two sources, 
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This gives : 
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Let us now denote by C2  the second criterion, 

                             )(2 τo
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which includes the (constant) contribution of the 
stationary source. 
 
   The aim of our algorithm is to restore in the first 
channel Z1 the contribution of our source of interest 

S1. Thus we need to maximize )(
1

ταon
zR  and to 

minimize )(
1

τo
zR  in the first channel.  

Minimizing of the contribution )(
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maximizing its inverse function : “ )(
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Finally, we need to maximize the following combined 
criterion : 
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where α  and β  are the weighting coefficient of C1 
and C2, respectively, for the first channel Z1 , where : 
                                   1=+ βα                            (19) 
As the contributions of the two sub-criteria C1 and C2 
are both important in restoring our source of interest in 
the first channel, we opted for equal weighting factor : 
                                 5.0== βα                        (20) 



6. CRITERION ESTIMATION 
 
The computation of the first criterion gives : 
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and for the second one : 

        
)(...2

)(.)(.)(

21

211

.1211

2
12

2
11

τ

τττ
o

yy

o
y

o
y

o
z

Rvv

RvRvR

+

+=
         (22) 

where v11 and v12 represent the coefficients of the 
first row of the de-mixing rotation matrix V.  
After whitening of the observations, one has                                  
WA=U that defines a unitary matrix, i.e.                               
U(U)H = I. This leads to V= (U) H. 
One can restrict oneself to matrices satisfying 
det(U)=1 without loss of generality. U is 
parameterised by a (2X2) Givens rotation matrix [2], 
where the angle of the rotation plane of the 
whitening observations Y is bounded by : 
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where θθ sincos 1211 −== vandv . Our criterion 

depending only on one rotation variable θ , we are 
looking for the optimal rotation angle optθ   which 

maximizes the criterion C(θ). 
 

7. SIMULATION RESULTS 
 
To validate our new algorithm we tried to apply it to 
a mixture composed of two sources. The first one is : 
                    )2cos(.)()(1 tftatS sπ=                   (25) 

where, a(t) is a white noise (see Figure 2). Simple 
calculation of the first and second order moments 
proves this signal to be a cyclostationary process 
with a fundamental cyclic frequency 

so f2=α  [1]. 

The second source is a white random process. 
We mix these two sources with the following matrix: 
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A                         (26) 

In the obtained mixtures, our source of interest is 
completely undistinguishable as shown in Figure 3. 

 
7.1 FIRST STEP 
 
After estimation of the different autocorrelations and 
cross-correlations of the whitened observations Y for 

0=τ , by using ten realizations of the two processes, 
one obtains the function C(θ) illustrated in Figure 4. 
We remark that our criterion exhibits a maximum, 
from which one can deduce 

optθ =0.6692 rd. 

Applying the rotation matrix V for the whitened 
observations gives the estimated sources of  Figure 5. 
Our algorithm provides a very good result since it can 
restore the cyclostationary process in the first channel.  
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   Figure 2 :  The cyclostationary source 
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Figure 4 :  Cest  versus  θθθθ 
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Figure 3 :  The observed signals 
(mixtures) 



Figure 5 :  The estimated sources 
 
7.2 SECOND STEP 
 
In order to quantify our algorithm separation quality, 
we estimate our sources using the different values of 

θ  : )(
^

θS . We then compute the Mean Normalized 
Quadratic Error (MNQE) between the real source 
vector and its estimates at different angle values θ  :  

                2
2^

/)()( SSSMNQE θθ −=           (27) 

Figure 6 illustrates the obtained result. Hence, the 
theoretical optimal rotation 

optth _θ =0.6592 rd. 

optθ  and 
optth _θ  values being close one to each other 

confirms the efficiency of our algorithm. 

Figure 6 :  MNQE  versus  θθθθ 
 

8. CONCLUSION 
 

In this paper, a new BSS technique has been used in 
order to separate a cyclostationary and a stationary 

process. The later uses only the knowledge of the 
cyclostationary process fundamental cyclic frequency 
and the sources second order statistical properties. 
Application of this new algorithm leads to very 
promising results, since the signature of the 
cyclostationary source is perfectly restored. 
The possibility of extracting a cyclostationary source 
from  a mixture of sources can be applied for rotating 
machines diagnosis in order, for example, to predict a 
defect in a bearing. Recent work has shown that the 
signal emitted by this kind of defect is a 
cyclostationary process [5]. 
The use of the proposed algorithm may be expanded 
into other signal processing areas, where the 
observations contain one or more cyclostationary 
processes (telecommunications, etc…). 
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