
FAST MULTI-FRAME REFERENCE VIDEO ENCODING WITH KEY FRAMES

Nukhet Ozbek1 and A.Murat Tekalp2,3

 1 International Computer Institute, Ege University, Izmir, Turkey
2 College of Engineering, Koc University, Istanbul, Turkey

 3 Department of Electrical Engineering, University of Rochester, Rochester, NY 14627

ABSTRACT

Enhanced reference picture selection in H.264 enables
increasing compression efficiency at the expense of
increasing complexity, in other words encoding time. We
search how we can select the best multiple reference
pictures by a fast, computationally efficient method. We
propose a simple histogram-similarity based method for
selecting the best set of multiple reference pictures. Out-
of-order coding of these frames is implemented by means
of pyramid encoding. Experimental results show that the
proposed approach can provide encoding time saving up
to 22% with similar picture quality and bitrate for selected
video sequences.

1. INTRODUCTION

For complexity/speed optimization of H.264 encoding,
several algorithms have been proposed for the case of
single-reference frame motion compensation up to now
[1-3]. The H.264 syntax also supports multiple reference
frames so that more than one previously coded pictures
can be used as reference for motion-compensated
prediction. This is an important feature of the standard
since it can provide considerable gain in terms of
compression efficiency [4]. However, increased
compression efficiency generally comes at the expense of
dramatic increases in computational complexity. We
hereby propose a new method that enables fast selection
of the best multiple reference frames for H.264 video
encoding.

The concept of B-pictures is generalized in H.264 to B-
slices, which employ two distinct lists of reference
pictures, list 0 and list 1, containing short term and long
term (LT) pictures. The default index order, based on
picture order count (poc), of the pictures is as follows: list
0, starts with the closest past picture and is followed by
other past pictures with decreasing poc, and then future
pictures with increasing poc; list 1, starts with the closest
future picture and is followed by other future pictures
with increasing poc, and then past pictures with
decreasing poc.

Unlike previous standards, the best reference is chosen on
a macroblock basis. Macroblock mode decision and
motion estimation are the most computationally expensive
processes in H.264. RD optimized mode decision process
calls for calculation of bitrate and distortion for each
option by actually encoding and decoding the video. Brute
force approach to obtain the best RD performance
requires, for each macroblock, motion search to be done
by considering all frames in the reference lists.

Key frames, which are the most representative frames for
a video shot, are widely used in video summarization,
indexing and retrieval [5]. We propose using key frame
selection methods for fast selection of the best multiple
reference frames for each group of pictures (GoP). To this
effect GoP boundaries can be defined to match video
shots, which can be determined by standard shot boundary
detection methods [5,6]. In extracting key frames for each
shot, an important issue is to determine an appropriate
number of key frames to well represent the shot content.
Existing approaches for key frame selection tend to be
either cluster-based or sequential-based methods using
some visual similarity measure [6].

In this paper, we present a computationally efficient,
cluster-based method for key-frame extraction using a
histogram similarity measure, and an alternative way of
buffer management in H.264 by keeping the key
references in the Decoded Picture Buffer (DPB) and
adding them into list0 and list1 when needed. The
performance results are drawn by comparing our proposed
method and the H.264 reference software (JM 9.2) under
the same conditions. The paper is organized as follows: In
Section 2, key frame selection method is reviewed. How
we changed the coding order for the key frames is
discussed in Section 3. Experimental results are presented
in Section 4, and conclusions are drawn in Section 5.

2. KEY FRAME SELECTION
Our key frame selection method follows the clustering
approach in [5], where color histogram similarity is

employed as a measure. Shots with similar scene content
are clustered together. Given shot boundaries, the mean
color histogram of each cluster is calculated. The frame
whose histogram has the minimum distance to the mean
histogram is selected as the main key frame for that
cluster. Since the proposed method use histogram bins
(totally 256, due to 8-bit pixel values) for subtraction in
similarity measure, instead of frame-size times pixel-by-
pixel difference it is computationally efficient enough.
Hence, the key-frame selection cost is negligible in total
encoding time.

We used two clips, one with 199 frames (video1) and
another with 121 frames (video2), from the movie Troy
(640×272, 25 fps) that both include two clusters with two
scene changes. The test clips are typical examples of
alternating camera angles that switch back and forth
between two different scenes. As shown in Figures 1-3,
frames prior to scene change 1 and the frames after scene
change 2 together correspond to Cluster 1, whereas
frames in between two scene changes correspond to
Cluster 2.

We define three different test cases for video1 and one
case for video2, as follows:
• In the first case, each cluster has the main key frame

together with other two frames which have the smallest
difference to the mean histogram (See Fig. 1). The main
key frame is 78 for cluster1 and 132 for cluster2 here.

• In the second case, the main key frame is along with
two frames which have higher difference to the mean
histogram such that the one has a smaller poc and the
other has a bigger poc than the poc of the main key
frame (See Fig. 2).

• In the third case, among last two key frames in the
second case the one has lower difference is removed.
Namely, pair (78,168) is selected as key frames for
cluster1 and pair (84,132) is selected as key frames for
cluster2.

• For video2, two key frames are selected as the ones
have minumum and maximum difference to the mean
histogram (See Fig. 3). 24 and 60 are the main key
frames here.

Test results for all cases, which are called Test1, Test2,
Test3 and Test4, respectively are reported in Section 4.

Fig. 1: Key Frame selection for case #1 of video1.

Fig. 2: Key Frame selection for case #2 of video1.

 Fig. 3: Key Frame selection for video2.

3. CODING OF KEY FRAMES

Pyramid coding is a non-normative encoder model
implemented in JM version 9.2 in order to support more
flexible GOP structures. Although it is designed to
achieve temporal scalability, it may also be useful for
increasing compression efficiency due to its out-of-order
coding nature. For our test cases the key frames need to be
coded first and placed in the DPB before starting to code
other frames. At this stage the pyramid coding serves us
very well with the explicit format mode.

We use the same GOP structure for both the JM reference
encoder and our modified encoder such that
“I-RB-RB-RB-RB-RB-P-RB-RB-RB-RB-RB-P”, where
RB means reference B picture. For a fair comparison it is
necessary to keep encoder parameters the same. The only
difference must be identities of the frames in reference
lists, for our case key frames always exist in the buffers.
Depending on this difference, another difference has to
turn out to be coding order. The reason why of different
coding order lies under the requirement of that key frames
should be coded before their normal orders came, so that
they can be used as reference more.

According to three types of key frame selection
mentioned in Section 2, three different coding order
comes out. Key frame combinations and corresponding
coding orders are given in Table 1 and 2 for video1 and
video2, respectively. First brackets include Cluster 1’s
key frames and second brackets have Cluster 2’s key
frames.

Key Frames Coding Order
{75,78,82}&{131,132,134} I0-P78-B75-B82-P132-B131-B134-P6-B1-..

{18,78,168}&{84,132,150} I0-P18-P78-P168-P84-P132-P150-P6-B1-..

{78,168}&{84,132} I0-P78-P168-P84-P132-P6-B1-..

{78,168}&{84,132} I0-P6-B1-..-P60-P78-B55-..-B77-P168-B79-
..-B83-P84-P90-..-P114- P132-B109-..

Table 1. Key frames for Test1, Test2, Test3, Test3 v2

Key Frames Coding Order
{24,106}&{60,81} I0-P24-B106-P60-B81-..

{24,106}&{60,81} I0-P6-B1-..-P12-P24-B7-..-P30-B106-B25-
..-P48-P60-B81-B43-..

Table 2. Key frames for Test4 and Test4 v2

4. RESULTS

We have performed our experiments on a P4 3GHz PC
with 1 GB RAM. The first test set is formed by the search
range (SR) parameter to be used in motion estimation and
its selected values 16, 32 and 64. When SR=32 and
SR=64 results are compared, SR=32 outperforms in
encoding time whereas bitrates are the same. On the other
hand, if SR=16 is used significant time saving is obtained
when compared to SR=32 with a negligible bitrate
increase. Thus we continue our experiments with SR=16.

It is reported in [7] that if 5 reference pictures are used
instead of 1, typical gains could be in 5% range, and for
sequences with background that remains similar, gains
could be as high as 10%. Being motivated from this point,
high number of references is involved in this study.
Therefore, (7, 7, 3) and (2, 6, 3) values are selected for the
reference buffer triple. The triple is constructed such that
the first element means the number of references in P list0
and the second and third elements mean B list0 and B
list1, respectively.

Table 3 and 4 are given to state comparative results of
video1 for buffer (7,7,3) and (2,6,3) conditions. Table 5 is
given to state comparative results of video2 at buffer
(2,6,3) condition. Encoding time, bitrate and luminance
SNR values are taken from the output report of the
encoder. Time saving is percentage of difference in
encoding time calculated as:
Time_saving = [(JM_time – Test#_time)/JM_time] × 100.
Total Rbits, which is abbreviation of Remaining bits, is an
important measure in order to analyse bitrate increase in
the test cases and calculated as follows:

Total_Rbits = Total_Bits - Σ Keyframe_Bits,
where Total_Bits is also taken from the codec output
report.

In this study, the same type of buffer management is
applied for all tests, which is based on keeping key frames
together in the lists for specific intervals. For example in
{78,168}&{84,132} case, key frames 78 and 168
continuously exist in the reference lists as long as the
frames in between 1 and 83 and the frames in between
166 and 198 are coded. Similarly, key frames 84 and 132
are kept in the lists during the frames in between 85 and
165 should be coded.

Current buffer management style in the JM performs poc-
based reordering in B lists and picture number-based in
P list. In order to be sure that the key frames are used
properly in the reference buffer for other frames, we use
long-term reference syntax and MMCO (Memory
Management Control Operation) commands. The key
frames are marked as long-term just after encoded and
added into the lists when needed.

Software Encoding
time(sec)

Bitrate
(kbps)

Luma
SNR(dB)

Total
Rbits

Time
saving(%)

JM v9.2 1127 267.15 35.52 2,062,024 -
Test1 956 287.0 35.65 2,082,888 15.17
Test2 975 276.8 35.67 1,888,096 13.50
Test3 958 266.2 35.63 1,875,472 15.00

Table 3. Test results of video1 for reference buffer is (7,7,3)

Table 4. Test results of video1 for reference buffer is (2,6,3)

When compared to JM results, Test1 results, in which
{75,78,82} and {131,132,134} key frame set is used,
show that 15.17% time saving is achieved as keeping
SNR the same but at the expense of considerable increase
in bitrate. Besides bitrate increase there is significant
increase in Total Rbits, as well. This means that the key
frame combination in Test1 brings no advantage since we
target to get time saving without loss in compression
efficiency and PSNR.

Test2 gets smaller time saving than Test1 but bitrate is
closer to the original one and Total Rbits is even lower. It
shows that reference buffer organization like 3 key frames
together with 4 recently coded frames is better than the
regular one. On the other hand, in selection of key frames,
choosing the other two with higher histogram difference
(less similar to the main key) makes more sense.

Results show that Test3 outperforms Test2, since it has
higher time saving and lower cost for the remaining
frames. The reason for this is buffer organization, which
is 3 key frames together with 4 recently coded frames for
Test2, whereas in Test3 it is 2 key frames together with 5
recently coded frames.

In Table 4, it is seen that Test3 can reach 18% time saving
and encode at a smaller bitrate than the original software
when the buffer size is set to (2,6,3). Consequently, 2 key
frames and 4 recently coded frames together with

Software Encoding
time(sec)

Bitrate
(kbps)

Luma
SNR(dB)

Total
Rbits

Time
saving(%)

JM v9.2 1005 275.6 35.51 1,933,896 -
Test3 824 273.5 35.63 1,937,968 18.0

Test3 v2 798 267.7 35.62 1,871,136 20.6

{78,168}&{84,132} key references is the best of our
experiments up to now.

Test4 v4 471 253.7 37.56 1,099,344 21.6
Table 5. Test results of video2 for reference buffer is (2,6,3)

In most cases, it is observed that although Total Rbits
values are smaller, bitrates are bigger than the original. To
be able to explain this observation we plot and compare
costs of key frames in both the modified and the original
software. The comparisons result in that key reference
costs are very high in the modified case due to out-of-
order way of coding them. The huge distance between key
frames and the I-frame causes weak correlation and so
high costs.

In order to make any advance, we consider accumulating
key frames one by one during encoding instead of coding
them at the beginning. Namely, some key frames should
be coded when there is a certain distance to the actual
order of it. This type of coding orders are given in the last
row of Table 1 for video1 and the second row of Table 2
for video2. Performance results of Test3 v2 and Test4 v2
show that while time saving increases, it is observed a
considerable decrease in bitrate and Total Rbits.
Therefore, by means of accumulating key frames, their bit
costs are reduced. They are not allowed to exist in the lists
of far frames, so Total Rbits are also reduced.

Searching any further improvement on Test4, we tried
another type of buffer management, of which performance
results are stated as Test4 v3, and v4. In this scheme, only
one key frame can exist in the lists. Pictures of each
cluster are ordered according to their distance to the mean
histogram and then are grouped into two parts which have
equal number of pictures. The main key reference is used
for encoding the frames in the part that has smaller
distance, and the other key reference is used for encoding
the frames in the other part which has bigger distance.

Test4 v3 is single keyframe in the lists version of Test4
(coding keys at the begining) whereas Test4 v4 is the
single key version of Test4 v2 (accumulating the keys).
For the first case, in both time saving and bitrate an
improvement achieved. For the second case, keeping time
saving the same, a considerable decrease in bitrate is
obtained.

5. CONCLUSIONS

Several algorithms on speed optimization are proposed
with single-frame reference in the past. However, only
few studies exist with multiple frame references, which
propose fast motion estimation by various prediction
methods for selecting the initial search point [1, 2, 3].
 We selected two or three key frames for different
scenes in the test videos according to color histograms,
coded them as LT reference and kept them in the DPB till
the end of encoding.
 Test results show that fast H.264 video encoding with
multiple frame references can be achieved at similar
quality and bitrate as the brute force reference encoder.
We note that the amount of time saving is closely related
to how key frames are selected, the number of key frames,
which other frames should exist in the reference buffer
along with them and also the reference buffer size.

6. REFERENCES

[1] Y. Hsiao, T. Lee, P. Chang, “Short/long-term Vector
Prediction in Multi-frame Video Coding System”, in
Proceedings of the IEEE Int. Conf. on Image Processing 2004,
Singapore, October 2004, pp. 1449-1452.

[2] X. Li, E. Q. Li, Y-K. Chen, “Fast Multi-Frame Motion
Estimation Algorithm with Adaptive Search Strategies in
H.264”, in Proceedings of the IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing 2004, Canada, pp. 369-372.

[3] M-J. Chen, Y-Y. Chiang, H-J. Li, M-C. Chi, “Efficient
Multi-Frame Motion Estimation Algorithms for MPEG-4
AVC/JVT/H.264”, in Proceedings of the IEEE Int. Symp. on
Circuits and Systems 2004, Canada, pp. 737-740.

[4] M. Flierl, B. Girod, “Generalized B Pictures and the Draft
H.264/AVC Video-Compression Standard”, IEEE Trans. on
Circuits and Systems for Video Tech., Vol. 13, no. 7, pp. 587-
597, July 2003.

[5] M. Ferman, A.M. Tekalp, R. Mehrotra, “Robust Color
Histogram Descriptors for Video Segment Retrieval and
Identification”, IEEE Trans. on Image Processing, vol. 11, no. 5,
May 2002.

[6] Y. Ho, W. Chen, C. Lin, “A Rate-constrained Key-frame
Extraction Scheme for Channel-aware Video Streaming”, in
Proceedings of the IEEE Int. Conf. on Image Processing 2004,
Singapore, October 2004, pp. 613-616.

[7] A. Puri, X. Chen, and A. Luthra, “Video coding using
the H.264/MPEG-4 AVC Compression Standard,” Signal Proc.:
Image Communication, Elsevier, vol. 19, no. 9, Oct. 2004.

Software Encoding
time(sec)

Bitrate
(kbps)

Luma
SNR(dB)

Total
Rbits

Time
saving(%)

JM v9.2 601 246.7 37.36 1,129,048 -
Test4 488 269.5 37.58 1,138,456 18.8

Test4 v2 471 255.5 37.56 1,108,336 21.6
Test4 v3 476 263.5 37.58 1,109,248 20.8

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	A. Murat Tekalp
	Nukhet Ozbek

