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ABSTRACT

This paper deals with performance improvement of the sign
algorithm, which is known to be suffering from slow rate of
convergence, especially when the input signal is highly cor-
related. To overcome this drawback, decorrelated input sig-
nal is used to pilot the adaptive filter. In this paper, we show
that using this technique, a punctual degradation can occur
when the pre-whitened input direction is the opposite of the
right one. To prevent this problem, we introduce the con-
cept of “Stop and Go” to govern the algorithm. It consists on
freezing the adaptation when we detect this effect. Experi-
mental results conducted on highly correlated input and long
system impulse response indicate clearly the effectiveness of
the proposed algorithm.

1. INTRODUCTION

In many fields, such as acoustic echo cancellation [1] and
speech coding [2], the family of sign algorithm is retained
thanks to its low complexity and robustness against impul-
sive noise . However, it suffers from slow convergence rate,
especially for highly correlated input signal. As an extension
to the Least Mean Square (LMS) family, for which filtered X-
LMS approach, is introduced to accelerate convergence [3],
the family of filtered sign algorithm has also been proposed
(see for example [4, 5, 6]). Hence, a variety of algorithms
has been investigated. Each version overcomes some limita-
tions of classical sign family. Sometimes, it introduces novel
limitations. For example, the filtered sign algorithm using
pre-whitened input and filtered error leads to better conver-
gence rate but amplifies additive noise in steady state.

One retained algorithm in term of compromise between
low complexity, fast convergence rate and good steady state
performances is the Filtered Sign Algorithm (FSA) [6]. Its
adaptation term uses the pre-whitened input and the sign of
the error signal. In this paper, we show that FSA can suffer
from punctual degradation, especially if we adapt the algo-
rithm in the opposite direction of the desired one. Hence,
we propose to improve the FSA algorithm by introducing the
concept of “Stop & Go” rule: we freeze adaptation when we
detect that pre-whitened input signal direction moves away
the adaptive filter from the optimal solution. The proposed
criterion to decide about adaptation freeze is based on a com-
parison between the sign of the error and the sign of the fil-
tered error.

The proposed Normalized Filtered Sign Algorithm
equipped with “Stop and Go” rule (SGNFSA) offers at least
two improvements: better convergence rate, and smaller
mean square error in the steady state.

This paper is organized as follows. In section 2, the pro-
posed algorithm is described. Section 3 provides the neces-
sary justifications to the proposed ideas. Section 4 presents
some simulation results supporting the proposed algorithm.
Finally concluding remarks are provided in section 5.

2. ALGORITHM DESCRIPTION

2.1 Background

Let us consider the identification problem. The input/output
equation of the system to be identified is given by

y(k) = FT X(k)+ n(k), (1)

where x(k) is the input signal, y(k) is the output, F is
the unknown system impulse response of length L, X(k) =
[x(k), · · · ,x(k −L + 1)]T is the input observation vector and
n(k) is a zero mean additive white Gaussian noise. An adap-
tive FIR filter H(k) is used to identify the system impulse
response F .

In this paper, we are interested in sign algorithms us-
ing the concept of input pre-whitening [5]. Different so-
lutions are possible. In previous work [6], we investigated
three adaptation process: pre-whitening only the input, pre-
whitening the input and filtering the error using the same pre-
whitener or filtering only the error signal. In this paper, a
novel combination between original signals and filtered ones
in the adaptation process is proposed. This combination in-
troduces a novelty which consists on adaptation freeze during
some iterations. Moreover, we are interested with normal-
ized version of the algorithm.

2.2 Mathematical formulation

The proposed Stop and Go Normalized Filtered Sign Algo-
rithm (SGNFSA) is described as follows:

H(k + 1) = H(k)+ µ
G

{
e(k),e f (k)

}
N (k)

X f (k)

G
{

e(k),e f (k)
}

=
sign [e(k)]+ sign

[
e f (k)

]
2

,

(2)
where µ is a positive step size, e(k) is the error signal given
by:

e(k) = y(k)−H(k)T X(k), (3)

X f (k) = [x f (k), · · · ,x f (k−L+ 1)]T is the observation vector
of the pre-whitened input signal x f (k), e f (k) is the filtered
error signal, and N (k) is the normalizing factor.



The pre-whitened input signal x f (k) is given by:

x f (k) = x(k)−P(k)T X̃(k−1), (4)

where P(k) is the adaptive predictor of length LP and X̃(k−
1) = [x(k−1), ...,x(k−LP)]T is the input observation vector.

In this paper, we apply the same filter, used to de-
correlate the input signal, to the error signal to drive the adap-
tive algorithm. The filtered error e f (k) is given by:

e f (k) = e(k)−P(k)T E(k−1), (5)

where E(k−1)= [e(k−1), ...,e(k−LP)]T is the error vector.
The normalizing factor N (k) is expressed as follows:

N (k) =
L−1

∑
i=0

|x f (k− i)|+ β , (6)

where β is a constant avoiding division by zero.
The adaptive predictor is a sign-based algorithm. It is

described as follows:

P(k + 1) = P(k)+
µP sign

[
x f (k)

]
X̃(k−1)

LP

∑
i=1

|x(k− i)|+ β
, (7)

where µP is the pre-whitener step size.

2.3 Algorithm description

The expression of the proposed algorithm (2) is characterized
by three terms : X f (k), N (k) and G

{
e(k),e f (k)

}
. They are

justified as follows:

• The filtered input x f (k) is used instead of the original
input x(k), in order to accelerate convergence. It is ob-
tained using a de-correlation process whose output is the
prediction error. We note that, in order to maintain low
the computational complexity, we use an adaptive predic-
tor based on sign algorithm.

• The normalization factor N (k) is introduced in order to
control the critical step size and to speed up the conver-
gence.

• The term G
{

e(k), e f (k)
}

describes the “Stop and Go”
rule. In fact, two situations are possible:
� if sign [e(k)] = sign

[
e f (k)

]
, the algorithm update will

be given by:

H(k + 1) = H(k)+ µ
sign [e(k)]X f (k)

N (k)
(8)

It corresponds to the “Go” step in the algorithm,
which is equivalent to the Normalized Filtered Sign
Algorithm (NFSA).

� if e(k) and e f (k) have opposite signs, the adaptation
is frozen H(k + 1) = H(k) and it corresponds to the
“Stop” step in the algorithm.

Once the algorithm is presented, it is obvious that the
“Stop and Go” rule must be justified. This is the objective of
the following section.

3. ALGORITHM JUSTIFICATIONS

3.1 Punctual degradation in NFSA algorithm

As starting point, we propose to use the NFSA algorithm de-
scribed by (8). In fact, this algorithm was shown to be pow-
erful in term of convergence acceleration [6]. In this subsec-
tion, we’ll point on one limitation of this algorithm, which
consists on punctual degradation when the filtered input di-
rection moves away the adaptive filter from the optimal solu-
tion.

First of all, we define the deviation vector between the
unknown system impulse response and the adaptive filter:

V (k)
�
=F −H(k). (9)

It obeys to the following recursion:

V (k + 1) = V (k)− µ
sign [e(k)]X f (k)

N (k)
. (10)

The error signal can be expressed by

e(k) = V (k)T X(k)+ n(k). (11)

The adaptive algorithm converges without punctual
degradation, if the norm of the deviation vector vanishes,
which means that:

||V (k + 1)|| ≤ ||V (k)||. (12)

The deviation vector can be decomposed as follows:

V (k) = U(k)+
V (k)T X f (k)
||X f (k)||2 X f (k), (13)

where U(k) is the vector orthogonal to X f (k).
Using (13), we rephrase the recursion (10) as follows:

V (k + 1) = U(k)+
[

V (k)T X f (k)
||X f (k)||2 − µ

sign [e(k)]
N (k)

]
X f (k).

(14)
From equation (14), it is easy to show that the condition

(12) is satisfied if the following inequality is verified

|V (k)T X f (k)
||X f (k)||2 − µ

sign [e(k)]
N (k)

| ≤ |V (k)T X f (k)|
||X f (k)||2 . (15)

From the last equation, it is important to note that if e(k)
and V (k)T X f (k) have different signs, the condition given in
(12) is not satisfied. This leads to a punctual degradation,
which may cause noise enhancement and/or convergence de-
lay. To overcome this problem, we propose to stop adapta-
tion if sign [e(k)] �= sign

[
V (k)T X f (k)

]
, otherwise, adaptation

is kept. This is what is called “Stop and Go” rule.
In figure 1, we illustrate this problem of punctual degra-

dation in the NFSA, through the evolution of the Mean

Square Deviation MSD
�
=E

{
V (k)TV (k)

}
and for only one

run. The simulation conditions are : the input signal is a first
order auto-regressive signal of power Px = 5.3 and whose
model is x(k) = 0.9x(k − 1) + g(k), where g(k) is a white
Gaussian signal. The system impulse response is an acoustic
response of a room truncated to L = 64 (sampled at 16 Khz),
the additive noise n(k) was used with SNR = 46dB.

It’s interesting to note, that when the NSFA suffers from
punctual degradation, the SGNFSA freezes the adaptation.
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Figure 1: Punctual degradation in NFSA algorithm.

3.2 sign
[
V (k)T X f (k)

]
approximation

Since V (k)T X f (k) is not observable, we must find an approx-
imation to this term in order to propose a practical formula-
tion of the proposed “Stop and Go” rule.

Let us assume the case of fixed optimal predictor P(k) =
P. This assumption can be argued by the fact that the predic-
tor length is smaller than the filter length, and the predictor
converges more rapidly than the adaptive filter. Using this as-
sumption, the pre-whitened input vector and the filtered error
are re-written as follows:

X f (k) = X(k)−
LP

∑
i=1

piX(k− i), (16)

e f (k) = e(k)−
LP

∑
i=1

pie(k− i). (17)

Assuming that in the transient state |n(k)| <<
|V (k)T X(k)|, this means that during that state
e(k) ≈ V (k)T X(k), and using equations (11) and (16),
the term V (k)T X f (k) can be approximated as follows:

V (k)T X f (k) ≈ e(k)−
LP

∑
i=1

piV (k)T X(k− i). (18)

Denoting

∆(k, i) = V (k)−V (k− i),

and using the same assumption e(k− i) ≈V (k− i)T X(k− i),
the last equation (18) can be re-phrased as follows:

V (k)T X f (k) ≈ e f (k)−
LP

∑
i=1

pi∆(k, i)T X(k− i), (19)

In case of small step size and for slow rate of conver-
gence, V (k) and V (k− i) are too close, and the norm of ∆(k, i)
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Figure 2: “sign
[
V T (k)X f (k)

]
= sign(

[
e f (k)

]
” assumption

verification.

is very small. So, during the transient phase, one can assume
that

|e f (k)| >>

∣∣∣∣∣
LP

∑
i=1

pi∆(k, i)T X(k− i)

∣∣∣∣∣ . (20)

Hence, we may approximate the sign of V (k)T X f (k) by
the

sign of the filtered error e f (k).
This approximation will be verified through this simula-
tion. We plot, in figure 2, the rate of occurrence of the
statement “sign

[
V T (k)X f (k)

]
= sign(

[
e f (k)

]
” for 1000 iter-

ations. From this figure, it is interesting to note that, during
transient state, the used assumption is valid for more than
90% of cases, which makes it a good approximation.

3.3 “Stop and Go” rule

The stop and go rule characterized by a comparison be-
tween V (k)T X f (k) and e(k) signs is modified by a com-
parison between e f (k) and e(k) signs. A manner to stop
adaptation in the case of opposed signs and to maintain
adaptation in case of equal signs is to modify the term
µsign [e(k)] in adaptation expression of NFSA (8) by the

term µ
{

sign [e(k)]+ sign
[
e f (k)

]}
2

. In fact, it is easy to

verify that if e(k) and e f (k) have same sign, the adapta-
tion is carried using sign [e(k)] = sign

[
e f (k)

]
, otherwise it

is stopped.
Finally, thanks to this analysis, we were able to justify

the conception of this new algorithm SGNFSA resumed in
equation 2.

4. ALGORITHM PERFORMANCES

In order to validate the proposed SGNFSA algorithm, we
present simulation results carried in the same simulation con-
ditions as previous, obtained by averaging 1000 indepen-
dent runs using 10000 samples. The tested algorithms are :
Normalized Sign Algorithm (NSA) obtained by replacing
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x f (k) by x(k) in (8), the Normalized Filtered Sign Algo-
rithm (NFSA) described by (8), and the proposed SGNFSA
algorithm described by (2). The pre-whitener parameters are
LP = 1 and µP = 2−10.

The step sizes for the NSA and NFSA are accorded
in order to obtain the same steady state corresponding to

a Mean Square Error MSE
�
=E

{
e(k)2

}
= −26dB. They

are µNSA = 2−4.65, µNFSA = 2−4.33. To show the improve-
ment introduced by the “Stop & Go” rule, we have chosen
µSGNFSA = µNFSA.

In figure 3, we report the evolution of the MSE versus
iteration number. This figure shows that NFSA has better
convergence rate than NSA, and the introduced “Stop & Go”
rule increases the convergence rate while reducing the steady
state MSE to -27.5 dB. In fact, the SNA converges after
5500 iterations, the NFSA converges after 3400 iterations
and the SGNFSA converges after 2400 iterations.

The test algorithm performances are now evaluated in
acoustic echo cancellation field. The input signal x(n) is
a speech sequence, the system output y(n) is composed of
periods of only echo and periods of double talk (near-end
speech and echo). In such application, besides convergence
rate, steady state performance and complexity issues, an im-
portant aspect is the algorithm performance during double
talk.

In figure 4, we plot the evolution of the MSD. The same
step size µ = 2−6 is used for all algorithms and it is adjusted
such as bursts during transition from only echo to double
talk are avoided. No improvement is observed when pass-
ing from NSA to NFSA. However, the proposed SG-NFSA
outperforms and gives excellent performances for all operat-
ing conditions including double talk.

5. CONCLUSION

In this paper, we proposed a novel sign algorithm using the
two concepts of input pre-whitening and “Stop and Go” rule
for adaptation. The algorithm is justified by the need of faster

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−18

−16

−14

−12

−10

−8

−6

−4

M
S

D
(d

B
)

NSA
NFSA
SGNFSA

only echo double talk only echo 

Iteration number

Figure 4: Tested algorithms performance in acoustic echo
cancellation.

convergence for high correlated inputs and by the need of
adaptation freeze in case of local degradation. After algo-
rithm presentation, the different steps are analyzed and jus-
tified. Some simulation are carried to show that the pro-
posed algorithm presents good performance in term of con-
vergence speed, steady state mean square error and compu-
tational complexity.
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