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ABSTRACT

A recently proposed non-parameteric maximum likelihood
(NPML) channel estimator shows superior performance to
the least square (LS) estimator in presence of non-Gaussian
noise. The derivation of the NPML estimator assumed per-
fect knowledge of the channel order, which, however, does
not comply with most applications. In this paper, first we
study the effects of the inaccurate order assumption on the
NPML estimator, and then show that the traditional order se-
lection criteria like the AIC are unreliable to apply for the
NPML estimator. Finally we propose a simple method to
trace the channel order where the order selection and chan-
nel estimation are carried out simultaneously.

1. INTRODUCTION

A typical block diagram of a channel estimator is shown in
Fig. 1, where x(n) is the channel input signal, h(n) is the un-
known channel, w (n) is the channel noise, ĥ(n) is the channel
estimator and e(n) is the error signal. In a recent paper [1],
Bhatia (et al.) proposed a non-parameteric maximum like-
lihood (NPML) channel estimator with significant superior
performance to the least square (LS) estimator in presence of
non-Gaussian noise. In deriving the NPML estimator, how-
ever, the channel order was assumed known which is gen-
erally not the case for most applications. It is noted that in
this paper we take the presence of co-channel interference in
Gaussian noise as combined non-Gaussian noise [1].
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Figure 1: Block diagram of the channel estimator.

Although an old topic, the order estimation remains an
incompletely solved problem [2]. The most widely used or-
der estimation criterion are the Akaike’s Information Crite-
rion (AIC) [3], the Final Prediction Error (FPE) [3] and the
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Minimum Description Length (MDL) [4], all of which, how-
ever, are unreliable to apply when the noise is not Gaussian
as will be assumed in this paper. All other order estima-
tion algorithm are evaluated against the above three popu-
lar criteria. Usually the criterion indices for the possible or-
ders are calculated, before making the final order selection.
This brute-force approach demands high computation, im-
peding its application to on-line systems. Although some
approaches (e.g. [5]) can carry out the order selection and
channel estimation simultaneously, they are limit to specific
applications and hard to be applied to the NPML estimator.

For a channel estimator, the order ”under-estimate” is
more serious a problem than the order ”over-estimate” in
terms of performance. Thus in practice, it is usually not nec-
essary, if not impossible, to have a precise order estimate
as long as the order is not underestimated, thereby making
it possible to use simpler methods to estimate the channel
order. Recently, Gong (et al.) proposed a novel variable
tap-length adaptive algorithm which can be used to track the
channel order on-line [6]. However, based on the symbol-
based adaptive algorithm such as the LMS algorithm, the
proposed algorithm cannot be used for the NPML estimator
which is block-based.

In this paper, we will first investigate the influences of
the inaccurate order assumption on the NPML channel es-
timator. Then, after showing that the classic AIC criterion
is unreliable to apply in presence of non-Gaussian noise, we
will propose a simple method to search for the channel order
where the order selection and channel estimation can be car-
ried out simultaneously. Simulation results are presented at
the end.

2. NON-PARAMETERIC ML CHANNEL
ESTIMATOR

According to Fig. 1, and assuming N as the total number of
samples and Po as the true channel order, the channel output
vector can be expressed as:

r = XPohPo +w, (1)

where hPo is the channel vector, w is the noise vector, and
XPo is the channel input matrix which is given by:

XPo =




x(1) 0 0 · · · 0
x(2) x(1) 0 · · · 0

...
...

...
x(N) x(N−1) · · · x(N−Po +1)


 (2)



p 3 4 5 6 7 8 9 10 11
NMSE 0.0961 0.0215 0.0018 0.0023 0.0029 0.0034 0.0038 0.0047 0.0055

Table 1: NMSE for different assumed channel order.

The ML estimator maximizes the log-likelihood function

L (r|ĥp) = log f (r|ĥp) =
N

å
n=1

log fw (e(n)) (3)

with respect to the channel estimator vector ĥp, where the
assumed channel order is p and fw (.) is the scalar probability
density function (pdf) of the channel noise w (n).

As has been shown in [1], the ML estimator can be ob-
tained by the gradient ascent search as:

ĥ(k +1) = ĥ(k)+ m
¶ L (r|h)

¶ h

∣∣∣∣
h=ĥ(k)

. (4)

Since, in our system model, it is assumed that the noise dis-
tribution is ”unknown” (in (3)), a kernel density estimator is
used to estimate this density as,

f̂w (e) =
1
N

N

å
n=1

f (e− e(n)), (5)

where f (.) is the Gaussian kernel [1]. Then from (3) and (5),
and with some manipulations, we have:

¶ L (r |h )
¶ h

∣∣∣∣
h=ĥ(k)

=

− 1
Ns

N

å
n=1

å N
i=1(e(n)− e(i))(x (n)− x (i))f (e(n)− e(i))

å N
j=1 f (e(n)− e( j))

.

(6)

Finally substituting (6) into (4) gives the NPML estimator.

3. CHANNEL ORDER MIS-ESTIMATION

In general, if the channel order is assumed inaccurately,
the estimation error comes from two parts: the coefficient-
estimation error in the assumed model space and the space-
estimation error between the true model and assumed model
spaces [7]. As the assumed order increases, the coefficient-
estimation error always increases, while the space-estimation
error decreases until the assumed order is equal to, or large
than, the true channel order.

To be specific, if the channel order is under estimated, i.e.
p < Po, only the first p coefficients of the channel can be ef-
fectively estimated, and the received signal can be expressed
as:

r(n) =
p

å
i=1

h(i)x(n− i)+ w ′(n), n = 1, · · · ,N, (7)

where w ′(n) = h(p+1)x(n− p−1)+ · · ·+h(Po)x(n−Po)+
w (k). Then the problem reduces to estimating the first p
channel coefficients with the equivalent channel noise of
w ′(n). Hence when p < Po, beside that there are Po− p taps
“missing”, even the estimation errors corresponding to the

first p coefficients is larger than those when p = Po since
s 2

w ′(n) > s 2
w (n). Therefore the order under-estimate results in

significantly performance loss.
It is interesting to observe that w ′(n) basically forms a

Gaussian mixture. Thus under rare circumstance, can w ′(n)
be Gaussian. Further noting that NPML estimator demon-
strates significantly superior performance to the LS estimator
[1] in presence of non-Gaussian noise, we conclude that the
NPML estimator is always better than, or more robust to, the
LS estimator when the channel order is under-estimated.

On another front, if the channel order is over-estimated
(i.e. p > Po), the “space-estimation error” disappears and
only the “coefficient-estimation error” remains. Then the es-
timator vector can be expressed as:

ĥ = [hT
Po

0T]T + D ĥ, (8)

where D ĥ can be regarded as a perturbation to the ideal es-
timate. In general, the larger the N is, the smaller the per-
turbation term is. Particularly, it can be easily verified that,
if x(n) and w(n) are independent to each other and either of
them has zero mean, we have

lim
N→¥

D ĥLS
= 0. (9)

Thus if the data number is large enough, the last p−Po coef-
ficients of the estimator are very small.

As an example, we consider a system with presence
of co-channel interference (CCI) where SNR=20dB, hPo =
[1 0.8 0.6 0.4 0.2]T with Po = 5, the interfering channel
has signal-to-interference-ratio (SIR) of 10dB, and the total
number of samples is 100. Table 1 shows the normalized
mean-square-error (NMSE) of the NPML estimator when the
assumed channel order varies from 3 to 11 respectively. The
NMSE is a performance index to measure the “goodness” of
an estimator and is defined as

NMSE =
E[å ¥

n=1(h(n)− ĥ(n))2]
hT

Po
hPo

. (10)

It is clearly shown in Table 1 that the NMSE reaches the min-
imum at p = Po. But when p > Po, the NMSE are within
a narrow range, all significantly below those for p < Po.
This indicates that the order under-estimation is more seri-
ous a problem than the order over-estimate in terms of per-
formance, though the latter imposes more complexity.

4. NPML ESTIMATOR WITH ORDER
ESTIMATION

In this section, first we will show that the traditional AIC is
unreliable to apply for case of estimated and non-Gaussian
pdf, and then propose a simple method to estimate the chan-
nel order.



SNR=20dB, N=100 SNR=20dB, N=50 SNR=40dB, N=50
p No CCI No CCI SIR = 10dB

AICL̂ AIC ˆs 2 AICL̂ AIC ˆs 2 AICL̂ AIC ˆs 2

3 -85.39 -144.77 -35.50 -64.05 -33.59 -57.75
4 -179.63 -286.81 -85.21 -64.04 -54.92 -100.15
5 -464.65 -455.82 -193.96 -211.84 -57.72 -106.89
6 -465.80 -454.01 -192.40 -210.10 -55.93 -105.25
7 -470.73 -453.39 -201.67 -208.40 -54.21 -103.78
8 -468.73 -451.38 -199.69 -206.71 -55.64 -107.21
9 -467.33 -449.36 -198.09 -205.06 -53.89 -105.70

10 -466.22 -449.22 -205.55 -207.00 -57.97 -111.96
11 -468.58 -451.17 -203.81 -205.54 -56.78 -110.22

Table 2: AIC for different scenarios

4.1 Order estimation based on AIC

AIC is the most widely used order selection criterion which
is defined as [3]:

AICL̂ =−2L (r|ĥp)+2p, (11)

where L (r|ĥp) is defined in (3). When the noise is Gaus-
sian, (11) can be simplified to:

AIC ˆs 2 = N log ˆs 2 +2p, (12)

where ˆs 2 = (1/N) å N
n=1 e2(n).

Unfortunately, neither AICL̂ nor AIC ˆs 2 is reliable to es-
timate the channel order for the NPML estimator: first, al-
though the kernel density estimation (5) can be used to esti-
mate the likelihood, it is not accurate enough to calculate the
AICL̂ ; second, AIC ˆs 2 is only limited to Gaussian cases.

For illustration, we calculate the AIC for the same chan-
nel as that used in the previous section, and show the re-
sults in Table 2, where the minimum values are highlighted
in bold. Recall the true channel order Po is 5. In the first
case, we have a pure Gaussian channel, where SNR=20dB,
the number of sample N = 100 and no CCI. It is clear that
AIC ˆs 2 has its minimum at p = 5 but AICL̂ at p = 7 which is
biased away from Po. In the second case, we have the same
channel but N is decreased to 50. We observe that AIC ˆs 2

still finds the true order, but AICL̂ has the minimum which
is further away from Po. This is not surprising because, as
N decreases, the density estimation becomes poorer and so
does estimated AICL̂ . In the last case, the interfering chan-
nel is introduced where SIR=10dB, the SNR is increased to
40dB, by which the channel becomes totally different from
Gaussian. Under such scenario, neither AICL̂ nor AIC ˆs 2

estimates the channel order well. In conclusion, the AIC is
unreliable for use with NPML estimator for order selection.

4.2 A simple order estimation method for the NPML es-
timator

Below we describe a simple method to estimate the channel
order. The idea is based on the previous observation that,
when the channel order is over-estimated, the extra taps are
usually small compared to the others.

To be specific, at every iteration of the NPML estima-
tion, the summation of squares for the last M coefficients of
the estimator is measured. If it is smaller than M times of a

pre-set threshold e , then the order is decreased by 1; other-
wise, if the summation of squares for the last M− 1 taps is
larger than (M−1)e , the order is increased by 1, or the order
remains unchanged. In summary, we have the following pro-
cedure combining the order selection and the NPML channel
estimation together:

For every iteration , k = 1,2,3, · · ·
Do the kernel density estimation based on (5).
Update the estimator according to (4).
if å p(k)

i=p(k)−M+1 ĥ2
p(k) < M · e

p(k +1) = p(k)−1

else if å p(k)
i=p(k)−M+2 ĥ2

p(k) < (M−1) · e
p(k +1) = p(k)
else
p(k +1) = p(k)+1
end

end

In the above procedure, p(k) is the tap-length at kth it-
eration and M is an integer no less than 1. M has two ef-
fects: first, to create a “guard margin” so that the estima-
tion is based on M, rather than 1, coefficient values; second,
to make the search escape from the local minima which are
the zero coefficients within the range of the channel spread.
Then if the threshold value e is properly chosen, p(k) will
converge to within the range of [Po,Po + M− 1]. Obviously
this method tends to over-estimate the order.

The threshold e depends on both the channel specifics
and the channel estimator. When the sample number N is
large enough, the extra taps are normally very small, leaving
us big room to choose e . When N is small, the NPML estima-
tor significantly outperforms the LS estimator as the former
can explore the “local statistics” much better than LS. In fact,
with a fixed e = 0.01, we have tried extensive simulations un-
der different scenarios such as different channel, SNR, N and
etc. The results show that the proposed method always works
well as long as N is reasonable large (e.g. N > 30).

Alternatively, we may use dynamic threshold, i.e. e
varies at each iteration. It has been shown in Section 3 that
the channel estimation consists of the true channel plus a per-
turbation term. It is obviously that, the larger the N is, or the
smaller the ˆs 2 is, the smaller the perturbation is and then the
smaller the e we should have. Inspired by this observation,



we can have a dynamic threshold as:

e (k) =
C · ˆs 2(k)

N
, (13)

where C is a constant. To make the algorithm robust, we
ensure that e min < e (k) < e max, where e max and e min are max-
imum and minimum values for the threshold.

5. NUMERICAL SIMULATIONS

For the simulations in this section, the channel is the same
as that for the previous examples in this paper, M = 3, the
dynamic threshold based on (13) is used where C = 10,
e max = 0.05 and e min = 0.005. All results are based on one
typical run. The learning curves of the tap-length and the
second tap coefficient of the estimator are shown in (a) and
(b) respectively for each figure.

Fig. 2 investigates the proposed algorithm for differ-
ent initialization of the estimator’s tap-length, where SNR=
20dB, SIR= 10dB and N = 100. It is clear that, for all ini-
tializations, the individual tap-lengths converge to ‘6’ which
is in the range of [Po,Po +M−1] as expected.
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(a) Tap-length learning curve. (b) 2nd tap learning curve.

Figure 2: Learning curves for different tap-length initializa-
tion.

Fig. 3 compares the results for different sample number
N, where SNR=20dB and SIR=10dB. We observe that even
if N is as low as ‘20’, the algorithm can still track the order,
although it oscillates between ‘6’ and ‘7’ as shown in Fig. 3
(a). Accordingly, we observe slower coefficient convergence
for N = 20 in Fig. 3 (b).

1 5 10 15 20 25 30 35 40
5

6

7

8

9

10

11

No. iterations

T
a
p
−

le
n
g
th

s
 o

f 
th

e
 e

s
ti
m

a
to

r 
p
(k

)

N=100
N=50
N=20

1 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. iterations

T
h
e
 s

e
c
o
n
d
 c

o
e
ff
ic

ie
n
t 
o
f 
th

e
 e

s
ti
m

a
to

r

N=100
N=50
N=20

(a) Tap-length learning curve. (b) 2nd tap learning curve.

Figure 3: Learning curves for different number of samples.

Fig. 4 shows the results for different SNR-s, where the
SIR= 10dB and N = 50. It is obvious that the proposed al-
gorithm works well for all these SNR-s. From Fig. 4 (b), it is

interesting to note that NPML algorithm performs better for
SNR=20dB than for 40dB, as the former converges closer to
the true 2nd coefficient (which is 0.8) of the channel. This
is because that, in presence of CCI, the channel with SNR at
40dB is further “away” from Gaussian than that with SNR at
20dB, resulting in less accuracy for the kernel density esti-
mation.
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Figure 4: Learning curves for different SNR.

6. CONCLUSION

In this paper, we propose a simple method to estimate the
channel order and the channel coefficients for an unknown
additive noise. It was shown that traditional AIC based tech-
niques fail to estimate the channel order in non-Gaussian
senarios for NPML estimator. The simulation results con-
firm that a better order estimate can be obtained by using
proposed algorithm even in the presence of severe CCI.
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