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ABSTRACT

We analyze and optimize the performance of a trellis-coded modu-
lation system where receive antenna diversity is implemented. The
adaptive coded modulation scheme alone is a promising tool to
combat fading and it improves the spectral efficiency in mobile
communications. The improvement can be even higher when we
have multiple receiver antennas. The analysis is done in the pres-
ence of both estimation and prediction errors. Independent Rayleigh
fading on each subchannel is considered, and maximum ratio com-
bining is employed on the receiver side. As expected, the average
spectral efficiency increases, while bit error rate is always fulfilled.

1. INTRODUCTION

Adaptive coded modulation (ACM) is an efficient tool to counter-
act the fading in wireless channel communications and to improve
the spectral efficiency [1]. The improvement can even be higher
when diversity and combining techniques are included [2], [3]. The
scheme presented in this paper is a generalization of two recent pa-
pers; one by Cai and Giannakis [4], in which an uncoded adaptive
modulation system based on M -QAM constellations with single
transmit and single receive antenna is investigated, and one by Øien
et al. [3] where an ACM system with maximum ratio combining
(MRC) reception was investigated assuming perfect receiver chan-
nel state information (CSI). We extend and unify the idea of these
papers by analyzing the case when, as in [3], coding is included and
when MRC is implemented on the receiver side. The pilot spacing
and the power allocation to pilot and data symbols are optimized
as in [4], for maximal spectral efficiency under an instantaneous bit
error rate (BER) constraint. Instantaneous here is with respect to
predicted channel-signal-to-noise ratio (CSNR).

The estimator and predictor in our adaptive scheme are based on
received known pilot symbols which are sent at regular intervals on
the transmitter side. The predicted CSI is fed back to the transmitter
via a zero-error, non-zero delay feedback channel. Based on this,
the transmitter dynamically adapts the rate and the power to a mode
which is suitable for the channel to improve the average spectral
efficiency (ASE) while maintaining the instantaneous BER below
some pre-defined target BER0. As in [3], [5], multi-dimensional
trellis codes designed for additive white Gaussian noise (AWGN)
channels are used as component codes.

The reader should be aware that we omit the time indices wher-
ever it is possible, for notational simplicity. D(z) represents the
diagonal matrix with vector z on its diagonal. IK is the K ×K
identity matrix. Superscripts (·)T, (·)∗ and (·)H stand for trans-
pose, complex conjugate, and Hermitian transpose, respectively.
bzc means the integer part of z, and E[·] and Var(·) denotes the
expectation and variance operator, respectively.

The outline of the remainder of the paper is as follows. We de-
scribe our system in Section 2. The analysis of BER performance
and ASE performance can be found in Sections 3 and 4, respec-
tively. Numerical results are given in Section 5 before the conclu-
sions are drawn in Section 6.

This work is supported by the Research Coucil of Norway under the
project BEATS (URL: http://www.tele.ntnu.no/projects/beats/).

2. SYSTEM MODEL

The system we are considering is illustrated in Fig. 1, where we
have multiple receive antennas. The adaptive encoder chooses to
transmit symbols from the constellation of size Mn that is best
suited to the channel state, out of a set of constellations of sizes
{Mn}N

n=1, corresponding to the set of spectral efficiencies (SEs)
{Rn}N

n=1, where N is the number of constellations. The SEs
are ordered such that R1 < R2 < · · · < RN , and we also have
M1 < M2 < · · · < MN . The choice of Mn is based on the CSI
fed back from the receiver. Also, the power allocation between data
and pilot symbols is also chosen in an optimal way. The criterion
for choosing the code and the power used is to maximize ASE while
fulfilling a target BER. We include MRC on the receiver side, where
the branches are assumed to be mutually uncorrelated.

Similar to in [4], [5], we use a frame structure where each frame
starts with a pilot symbol and is followed by L− 1 information
symbols. Both the estimator and predictor are linear and are made
optimal in maximum a posteriori (MAP) sense [6]. The difference
between the two is that the estimator is non-causal and uses infor-
mation from both past and future symbols, while the predictor is
strictly causal. Due to this, the order of the estimator can usually be
lower than the order of the predictor.

The received, noisy, and faded pilot symbols of the jth branch
are written in complex baseband as

ypl;j(k; l) =
√
Eplhj(k; l)s(k; l)+nj(k; l), l = 0, (1)

and the received data symbols as

yd;j(k; l) =
√
Edhj(k; l)s(k; l)+nj(k; l), l ∈ [1, · · · ,L−1], (2)

where k is the frame index, l is the symbol index in that frame, and
j ∈ [1, · · · ,nR]. Epl and Ed is the power per pilot and per data sym-
bol, respectively, to be optimized later. s(k;0) is the pilot symbol
and {s(k; l)}L−1

l=1 are data symbols in the kth frame. For simplicity,
we assume that E[|s(k; l)|2] = |s(k;0)|2 = 1. Furthermore nj(·, ·)
denotes zero mean complex-valued AWGN with variance N0/2 per
dimension and dimensions being uncorrelated. The fading envelope
of the jth branch, hj(k; l), is assumed to be a stationary complex
Gaussian random process with zero mean and variance σ2

hj
= 1.

Moreover, the channel is assumed to be slowly varying so that it
remains constant over many channel symbols, and we perform the
estimation and prediction independently on each subchannel.

Similarly to in [4], [7], the average power per data symbol
and per pilot symbol is Ēd = αLE/(L− 1) and Epl = (1−α)LE ,
respectively, where E is the average transmit power for both pi-
lot and data symbols. Equal data and pilot power is obtained if
α = 1− 1/L. We will later on optimize the system with respect to
α and L.

3. BER PERFORMANCE ANALYSIS

3.1 BER Analysis in the Presence of Estimation Errors
The optimally estimated channel in the MAP sense for the complex
Gaussian case is a linear combination of the observations [6, p. 741–
742]. Let he;j(k; l) be the optimal linear estimate of the fading
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Figure 1: The adaptive pilot-symbol-assisted modulation system model combined with receive diversity combining.

channel of the jth branch, let εe;j(k; l) = hj(k; l)− he;j(k; l) be
the corresponding estimation error, and let the mean square error
(MSE) be σ2

e;j(l) = E[|εe;j(k; l)|2]. Since he;j(k; l) is a result of
an optimal filtering process and hj(k; l) is a zero mean Gaussian
random variable (RV), he;j(k; l) and εe;j(k; l) are also zero mean
Gaussian RVs.

We assume that the estimator is of order Ke, which means
that it uses a vector of Ke received pilot symbols, y(k;0) =
[ypl;j(k − bKe/2c;0), · · · ,ypl;j(k + b(Ke − 1)/2c;0)]T, to esti-
mate one sample. We define the pilot symbol vector s = [s(k−
bKe/2c;0), · · · ,s(k + b(Ke − 1)/2c;0)]T, the channel gain vector
h = [hj(k − bKe/2c;0), · · · ,hj(k + b(Ke − 1)/2c;0)]T, the co-
variance matrix Re = E[hhH], and the covariance vector re =
E[hh∗j (k; l)]. The linear channel estimator is given by [4]: we =√
Epl (EplD(s)ReD∗(s)+N0IKe)−1 D(s)re, and the estimated

channel is he;j(k; l) = wH
e y(k;0). As a result, the minimum MSE

(MMSE) of the estimation error for the jth branch can be calculated
as

σ2
e;j(l) = 1−

Ke

∑
κ=1

|uH
κre|2(1−α)Lγ̄j

(1−α)Lγ̄jλκ +1
. (3)

In (3), {uκ} denote the eigenvectors of R, {λκ} are the correspond-
ing eigenvalues, and γ̄j = E[|hj(k; l)|2]E/N0 = E/N0 is the aver-
age CSNR of one branch.

To reduce the complexity of the receiver, we use the subop-
timal symbol-by-symbol maximum likelihood (ML) detection on
each subchannel; z(k; l) = yd;j(k; l)/(

√
Edhe;j(k; l)). Based on

that detection rule, the CSNR of a single branch is given in [4]. The
total CSNR after MRC is the sum of the individual branch CSNRs,

γ(k; l) =
nR

∑
j=1

Ed|he;j(k; l)|2

N0 +gEdσ2
e;j(l)

=
Ed ∑

nR
j=1|he;j(k; l)|2

N0 +gEdσ2
e(l)

, (4)

where the last equality is obtained by assuming that the variance of
the estimation error is the same for all branches. The constant g = 1
for 4-QAM and g = 1.3 for M -QAM when M > 4 [4].

Tight approximations for trellis-coded modulation (TCM) BER
performance on AWGN channels can be found in [3], [5]. In order
to obtain a closed-form and mathematically tractable solution when
MRC is considered we use a somewhat looser BER approximation
expression which is given by

BER
(
Mn

∣∣γ)=
L

∑
`=1

an(`)exp
(
− bn(`)γ

Mn

)
(5)

where L is the number of the exponential functions which approx-
imate the simulated BER, Mn is the number of points in the sym-
bol constellation, and an(`), bn(`) are constellation dependent con-
stants which can be found in [7, Tab. I]. The approximation is illus-
trated in Fig. 2.

Inserting (4) into (5), the BER becomes

BER
(
Mn

∣∣{he;j}
)

=
L

∑
i=1

an(`)
nR

∏
j=1

exp
(
−AnEd|he;j(k; l)|2

)
where An = bn(`)/(Mn(E/γ̄j +gEdσ2

e(l))).
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Figure 2: BER performance of TCM codes on AWGN channels
for different M -QAM constellations. The solid lines denote the
approximations, while the stars are the simulated values.

3.2 BER Analysis in the Presence of both Estimation and Pre-
diction Errors
The predictor is strictly causal, and uses Kp pilot symbols from the
past to predict one sample in the set {hj(k; l)}L−1

l=1 of the kth frame.
Let the predicted subchannel be hp;j(k; l), the prediction error is
εp;j(k; l) = hj(k; l)−hp;j(k; l), and the MSE of the prediction error
is σ2

p;j(l) = E[|εp;j(k; l)|2]. The optimally predicted channel of one
branch hp;j(k; l) is also a Gaussian distributed random variable with
zero mean and variance σ2

hp;j
(l) = σ2

hj
−σ2

p;j = 1−σ2
p;j .

We assume now that the system feedback delay1 τ = DLTs,
where D is a positive integer (for notational simplicity) and Ts

is the duration of a channel symbol. Defining the transmit-
ted pilot symbol vector s = [s(k − D;0), · · · ,s(k −D −Kp +
1;0)]T—corresponding to the receive pilot vector y(k;0)—the
channel gain vector is h = [hj(k−D;0), · · · ,hj(k−D−Kp +
1;0)]T, the covariance matrix is Rp = E[hhH], and the covari-
ance vector is rp(l) = E[hh∗j (k; l)]. Similar to the estimation
case, the predicted channel is given as hp;j(k; l) = wH

py where
wp =

√
Epl

(
EplD(s)RpD∗(s)+N0IKp

)−1 D(s)rp is the MAP-
optimal predictor, and the MMSE of the predicted channel is

σ2
p;j(l) = 1−

Kp

∑
κ=1

|uH
κrp|2(1−α)Lγ̄j

(1−α)Lγ̄jλκ +1
, (6)

where {uκ} and {λκ} are the sets of eigenvectors and eigenvalues
of R, respectively.

Since hj = hp;j +εp;j , we can express the estimated channel as

1The feedback delay here includes the time it takes to perform prediction,
actual transmission delay on the feedback channel, and the processing time
needed by the transmitter to activate the code to be transmitted.



he;j(k; l) = hp;j(k; l)+ εp;j(k; l)− εe;j(k; l). (7)

For a single antenna system p(|he;j |
∣∣hp;j) is Rice distributed with

K = |(1−ρ)hp;j(k; l)|2/σ̃2
he;j

, where ρ is the correlation between
εe;j(k; l) and hp;j(k; l). It is shown in [4] that ρ typically takes on
very small values and that it can be set to zero. On the other hand,
in contrary to [4], the estimation error εe;j(k; l) is correlated with
the prediction error εp;j(k; l). Hence, σ̃2

he;j
= Var

(
|he;j |

∣∣hp;j
)

=
σ2

p;j −σ2
e;j .

Now we consider the MRC technique with the branches as-
sumed uncorrelated. Thus, p({|he|}

∣∣{hp}) = ∏
nR
j=1 p(|he;j |

∣∣hp;j).
As a result, BER

(
Mn

∣∣{hp;j}
)

can be calculated as:

BER
(
Mn

∣∣{hp;j}
)

=
∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
nR−fold

BER
(
Mn

∣∣{|he;j |}
)

×p
(
{|he;j |}

∣∣{hp;j}
)
d|he;1| · · ·d|he;nR |, (8)

and the result can be written as

BER
(
Mn

∣∣{hp;j}
)
=

L

∑
i=1

an(`)dnR
n exp

(
−AndnEd

nR

∑
j=1

|hp;j |2
)
(9)

where we have assumed that σ̃2
he;j

= σ̃2
he

∀j, and have let dn =
1/(AnEdσ̃2

he
+ 1). The predicted CSNR on each branch is de-

fined as in [3] by γ̂j = Ēd|hp;j(k; l)|2/N0, and the combined
predicted CSNR using the MRC scheme is obtained as γ̂ =
Ēd ∑

nR
j=1|hp;j(k; l)|2/N0. Inserting this into (9) gives

BER(Mn|γ̂) =
L

∑
i=1

an(`)dnR
n exp

(
− γ̂AndnEEd

γ̄j Ēd

)
. (10)

The combined predicted CSNR γ̂ is fed back to the transmitter via
the return channel and is used for deciding which code to use. If
γ̂n < γ̂ < γ̂n+1, code n (constellation of size Mn) is used. To find
the optimal switching thresholds {γ̂n}N

n=1 in a maximal ASE sense,
subject to BER and power constraints, we set (10) equal to BER0
and solve for γ̂n. Here we have to use a numerical approach to
obtain the solutions and this will be explained in Section 4.

We can find the average predicted CSNR as ¯̂γ =
(Ēd/N0)∑

nR
j=1 E[|hp;j(k; l)|2] = rγ̄jnR where r = Ēd(1− σ2

p)/E
and we have assumed that the prediction error is the same for all
branches. The overall predicted CSNR with MRC of nR branches
will follow a Gamma distribution, i.e. γ̂ ∼ G(nR, rγ̄j) [3].

3.3 Overall Average BER Performance Analysis
The average BER for the nth constellation is found by averaging
(10) over the Gamma pdf of γ̂. That is,

BER(Mn)=
∫ γ̂n+1

γ̂n

BER(Mn|γ̂)p(γ̂)dγ̂

=
L

∑
i=1

an(`)
(

dnĒd

rAndnEEd + Ēd

)nR

×Ψ (11)

where Ψ=Γ

(
nR, γ̂n

rAndnEEd+Ēd
rγ̄j Ēd

)
−Γ

(
nR, γ̂n+1

rAndnEEd+Ēd
rγ̄j Ēd

)
and Γ(·, ·) is the normalized incomplete gamma function [7].

The overall average BER is defined as the ratio between the
average number of bits in error, and the number of bits transmitted
in total [3], [4]:

BER = ∑
N
n=1 BER(Mn)Rn

∑
N
n=1 PnRn

, (12)

where Rn is the SE of the nth constellation, and Pn is the prob-
ability that code no. n is utilized. I.e. Pn =

∫ γ̂n+1
γ̂n

p(γ̂)dγ̂ =
Γ(nR, γ̂n/rγ̄j)−Γ(nR, γ̂n+1/rγ̄j).

4. OPTIMIZATION OF ASE

It is obvious that the variance of the prediction error is largest when
predicting the last symbol in a frame (i.e., l = L−1). On the other
hand, the variance of the estimation error is almost the same for all
l when the order of the estimator is of order Ke ≥ 20 [4]. Thus,
we use the variance of the estimation error σ2

e;j(L−1) and the con-
servative choice of the variance of the prediction error σ2

p;j(L− 1)
when deriving the optimal switching thresholds {γ̂n}N

n=1 as well as
in the further optimization process.

4.1 ASE Performance Analysis
The system is experiencing an outage when the predicted CSNR
falls below γ̂1, since there is no code in our code set which then
guarantees the BER performance. In that case, the system does
not send anything but the pilots—in order to perform the channel
estimation and prediction—while the data is buffered at the trans-
mitter. And since no transmission is allowed when γ̂ < γ̂1, we do
not use any data power during that time. Therefore the actual trans-
mitted power per data symbol can be set to Ed = Ēd/

∫∞
γ̂1

p(γ̂)dγ̂ =
Ēd/Γ(nR, γ̂1/rγ̄j).

The SE of the nth constellation used by the 2G-dimensional
trellis code is Rn = (1−1/L)(log2(Mn)−1/G) where G = 2 [3].
Hence, the ASE is given by

ASE=
N

∑
n=1

RnPn

=
L−1

L

N

∑
n=1

(
log2(Mn)− 1

G

)

×

{
Γ

(
nR,

γ̂n

rγ̄j

)
−Γ

(
nR,

γ̂n+1

rγ̄j

)}
(13)

where the term (1−1/L) accounts for the fact that every Lth sym-
bol is a pilot, in which no information is transmitted.

When using Nyquist sampling, L must be less than Lmax =
b1/(2fdTs)c [3], [4] where fd is the maximum Doppler shift. Thus,
for L ∈ [2, · · · ,Lmax] we have the following optimization problem:

max
α,L

ASE(α) subject to 0 < α < 1. (14)

The optimization algorithm used is described in [5], [7], (a more
complicated algorithm is also used in [4]); thus we choose not to go
into details about it here and, instead, refer to those papers.

5. NUMERICAL RESULTS

At this point, we consider an example ACM system which has
a set of N = 8 QAM signal constellations of sizes {Mn} =
{4,8,16,32,64,128,256,512} to switch between. Those constel-
lations are used to code and decode eight 4-dimensional trellis
codes. The carrier frequency is 2 GHz and the length of a chan-
nel symbol is 5 µs (corresponding to a channel bandwidth of 200
kHz when using Nyquist sampling). The system delay consid-
ered is τ = DLTs = 1 ms (or τfd = 0.2) and the mobile velo-
city v = 30 m/s. With those parameters, the Doppler frequency
fd = 200 Hz. We require the system to tolerate a BER0 = 10−5,
and choose the order of the estimator and predictor to be Ke = 20
and Kp = 250, respectively. Contrary to the results given in [4], for
τ = 1 ms, L can only take on certain discrete values. This is due
to the fact that D = 200/L and it must be an integer. As a result,
L ∈ {2,4,5,8,10,20,25,40,50,100,200}.

Fig. 3 shows how the optimal pilot spacing is distributed with
the average CSNR per receive branch. As can be seen, the pilot
period increases with increasing CSNR and is larger for the optimal
power case. It increases faster with more receive antennas.

Compared to the equal power scheme, more power is put on
the pilots when it is optimized (cf. Fig. 4). This is natural since
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data is already coded and since the distance between two pilot sym-
bols is larger. The power allocated to pilot symbols is lower with
higher diversity order for both schemes. It is due to the array gain
and the fact that MRC is optimal in the sense that it maximizes the
output CSNR, thus less power is needed when more antennas are
available. The pilot power decreases with CSNR, but it increases
again at about 28 dB for the optimal case. This effect corresponds
to the steeply increased pilot spacing in the same CSNR region, and
makes sure that the system still has a good channel prediction which
it can rely on. Hence, the BER is maintained.

Because of the finite number of codes, the ASE reaches a ceil-
ing when the CSNR grows large. As expected, the ASE is higher
when we have more antennas available to combine, and when the
power and pilot period are optimal. This is shown clearly in Fig. 5.
At low CSNRs, the gain is not remarkable compared to when, e.g.,
L is fixed to 10, but in the high CSNR region, when the pilot sym-
bols are dropped out significant, the gain is substantially increased.

We do not include the figure for the average BER here due to
space limitations. However, the BER constraint is satisfied (below
BER0 = 10−5) for all the values of nR, and CSNRs.
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6. CONCLUSIONS

We have investigated an ACM system where receive diversity by
means of MRC is implemented. The ASE is a result of an opti-
mization of the power distribution between pilot and data symbols,
and of the frequency of pilot symbols. Numerical results are in
strong agreement with our expectations. The ASE is considerably
increased; especially at high CSNRs. This is due to the fact that
the rate of the pilot symbols is significantly reduced in that region.
More or less a constant gain is achieved when the power is equally
distributed compared to when it is optimal; both for optimal L. In
addition, the gain becomes more significant when the number of
receive antennas is increased. These improvements are obtained
without any sacrifice of BER performance.
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