
IMPROVING THE INITIALISATION AND RELIABILITY OF THE SELF
ORGANISING OSCILLATOR NETWORK

S. A. Salem, L. B. Jack, and A. K. Nandi

Signal Processing and Communications Group,
Department of Electrical Engineering and Electronics, The University of Liverpool

Brownlow Hill, Liverpool, UK, L69 3GJ
(sameh.salem, a.nandi) @liv.ac.uk

ABSTRACT
The Self-Organising Oscillator Network (SOON) provides a
novel way for data clustering [1, 2]. The SOON is a distance
based algorithm, meaning that clusters are determined by a
distance parameter, rather than by density distribution, or a
pre-defined number of clusters. Repeated experiments have
highlighted the sensitivity of this algorithm to the initial se-
lection of phase values and prototypes. In repeated exper-
iments, the SOON as proposed by Frigui is shown to have
a number of shortfalls in terms of its performance over re-
peated clustering runs. This paper proposes improvements to
the initialisation stage of the algorithm by comparing the dif-
ference between random initialisation of the phase curve and
initialisation using the ordering obtained from a hierarchical
clustering approach. This leads to improved convergence of
the algorithm and more robust repeatability. When compared
against random generation of phases and prototypes as pub-
lished by Frigui originally, the changes in initialisation are
shown to give significant improvements in the performance
of the algorithm.

1. INTRODUCTION

Data overload is an increasing problem in many different ar-
eas of science and engineering. The creation of vast datasets
in science, government and industry presents challenging an-
alytical and statistical problems. Unfortunately, the ability
of interested parties to analyse these datasets in a reason-
able amount of time and at a reasonable cost has not kept
pace. Clustering is one such area where the automated anal-
ysis of large datasets is important, while also becoming a
problem. Numerous different unsupervised clustering tech-
niques are commonly in use; the Kohonen Self Organising
Map (SOM) has been perhaps one of the most popular un-
supervised clustering algorithms, and is used in many dif-
ferent applications [3, 4], hierarchical clustering techniques,
K-means clustering [5, 6], and k-medoids [7] are also widely
used. Other alternative techniques, such as fuzzy clustering
[7, 8] and many variations of vector quantisation [9] are den-
sity based and their main drawback is that they cannot map
the distribution of data in areas where the density of the data
is low [2]. Distance based clustering techniques attempt to
alleviate this problem by utilising the premise that clusters
are determined by a distance parameter, rather than by den-
sity distribution. The basis is simply that for any given clus-
ter centre, all data points regarded as being members of the
cluster will fall within a preset distance. This will allow clus-
ters in sparsely populated areas of data space to be formed
without affecting clustering in more dense areas of the data.
This paper examines the applicability and the reliability of

the SOON algorithm as a new clustering technique on a data
set from a real-world communication data problem.

2. THEORY

The Self-Organising Oscillator Network (SOON) is a com-
paratively new clustering algorithm [1] that has received rel-
atively little attention so far. SOON is a concept with roots in
biology; the algorithm is modelled on biological principles:
a good example of the synchronising oscillator phenomenon
would be that of fireflies, which start by flashing at random
initially, however the groups that are physically close to each
other will synchronise their firing. Groups that are separated
by distance will fire as disparate groups, each synchronised
within itself.

The behaviour of self-organisation of components with
an oscillatory nature gives rise to the name of the algorithm
- the Self Organising Oscillator Network (SOON). With the
SOON method, each object in the data, O j, is represented as
an “Integrate and Fire” oscillator, characterized by a phase
φ j and state χ j, where:

χ j = f (φ j) =
1
b

ln [1+ (eb −1)φ j ]. (1)

where 0 ≤ φ j ≤ 1 and 0 ≤ χ j ≤ 1 for j = 1 . . . . . .n; f (φ j)
is smooth, monotonically increasing function with f (0) =
0 and f (1) = 1; b is a constant determining how f (φ j) is
concave down (usually b = 3). Whenever an oscillator’s state
reaches the threshold (χ j = 1), it “fires”, with the following
consequenses:
• The oscillator phase and state, φ j and χ j are set to zero;

and
• The phases of all the other oscillators change by an

amount ε(φi), for i = 1 . . . . . .n; i 6= j.
Changing the phase of other oscillators has the effect of ei-
ther exciting or inhibiting them. An oscillator is excited by
having its phase increased, while it is inhibited by decreasing
its phase. The precise amount of the change is determined by
the coupling function ε(φi), which in turn depends on the dis-
similarity between the two oscillators (equivalent objects). A
typical coupling function would be as follows:

ε(φi) =











CE [1− (
δi j
δo

)2 ] δi j ≤ δo

CI [ (
δi j−1
δo−1 )2 −1 ] δi j > δo

(2)

where δi j = d(Oi , O j) is short-hand for the measure
of dissimilarity between two objects i and j, and δo is a
threshold dissimilarity that determines the cut off for what is



deemed “similar”; δo can be viewed as a resolution parame-
ter, as it affects the number of groups created. CE and CI are
the maximum excitory and inhibitory couplings permitted.
The firing of an oscillator tends to excite a few oscillators,
whilst inhibiting many others. Thus an oscillator receives
much more inhibition than excitation; hence CE �CI . Once
a set of oscillators is synchronized, the way that members of
the set interact with other oscillators not in the set must be
made uniform.

For larger datasets, a set of prototypes can be used as a
smaller number of initial cluster centres; these are normally
either selected at random from the data, to create a subset
of the data, alternatively they may be generated in order to
cover the extents of data space, so that an even distribution
of the centres over data space is made.

2.1 Stability and Robustness
The algorithm, as originally published, called for the ran-
dom initialisation of the phase values; this can potentially
cause problems with the initial selection of cluster centres,
as the first data point to fire within a certain group may not
be best suited to be the centre of the cluster. Additionally,
poor choice of the CI and CE parameters may cause incorrect
formation of clusters, as data points are pushed off of the end
of the phase curve. By changing the initialisation stages of
both the phase and prototype values, it should be possible
to improve this significantly. Part of the convergence time of
the algorithm is based on the principle that over time, the ran-
dom phases will take time to move from their random start-
ing positions to clusters of the same phase values, attracted
by the distance from the cluster centre. By using a hierarchi-
cal clustering technique to order the data points in terms of
their proximity to each other by initialising the phase vector
φ by the permutation vector of the node labels of the leaves
of the dendrogram, it should be possible to achieve the same
result in a much faster period of time, as the initial phase
curve will much more closely match that of the actual distri-
bution of the data in terms of distance. Thus, less time will be
spent waiting for the algorithm to stabilise, as the algorithm
will start off much closer to convergence than a random ini-
tialisation would allow. We propose to use the results of the
hierarchical clustering to select the prototype centres which
are expected to improve the clustering performance , as the
centres will map the centres of the data more closely than
selecting a random subset of the data as proposed by [1].

3. DATASETS

In order to examine the reliability of the SOON algorithm,
we use a communication data set, which represents a real-
world problem; in this specific case constellation diagrams
from different communication modulation schemes are a
good benchmark test problems for unsupervised clustering
algorithms, primarily due to the clean delineation between
different clusters within constellation at high SNR. However,
by lowering the SNR of the signal, it is possible to gain less
well-separated data, which can pose more of a problem for
the clustering algorithm, as the data becomes non-separable.

4. EXPERIMENTS

The effect of the initialisation of the phase values of the data
is investigated for both random generation of phase values
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Figure 1: The clustering performance for SNR, (a) 25 dB, (b)
20 dB, (c) 15 dB, (d) 10 dB.

and using the hierarchical clustering ordering to determine
the initial phase values. A second set of experiments examine
the effect of a randomly selected subset of the dataset for the
initial prototypes, as opposed to using a subset of the clusters
generated by the hierarchical clustering approach.

4.1 Results & Discussions
A series of experiments were carried out to examine the clus-
tering performance on a QPSK signal for different SNR val-
ues using proper value of δo. Figure 1 depicts the clustering
performance for different SNR values. The effect of random
generation of prototypes is tested and evaluated 100 times
using prototypes ( set to one half of the total number of data
points available for clustering). One reference run (best run)
was selected from the 100 runs using a reliable validity index.
In this paper I index [10] is used. Figure 2 shows the analysis
for low SNR values (15 and 10 dB). The two plots in Figure
2 contain three subplots, these subplots show (top) the differ-
ence in magnitude between the size of reference run clusters
(M) and the comparison clusters (N), showing the relative re-
producibility of the results; (middle) the number of runs (R)
that achieve the common cluster membership for each clus-
ter in the reference run, (bottom) the “gain” per run (N/M)
and the weighted gain per run (N/M) ∗R2. As can be seen,
examining the plots for 10 dB and 15 dB show that there is a
marked deterioration in the reproducibility of the clustering
result, as the fraction of cluster members maintained (i.e. the
gain - N/M) across many runs drops significantly for the 10
dB SNR data.

For improvement of the clustering performance of the
SOON algorithm, we propose to use the hierarchical clus-
tering to set up and order the phases on the concave function
curve that express the SOON model which leads to better
performance as well as speeding up the algorithm. Figure 3
shows the effect of hierarchical clustering for phase genera-
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Figure 2: Analysis of the effect of noise on clustering be-
haviour, over 100 runs for SNR, (a) 15 dB, (b) 10 dB.

tion on the clustering performance at 10 dB SNR. As shown
in Figure 3, the clustering performance using hierarchical
clustering for phase generation gives a significant improve-
ment, which is shown by the gain per run, as well as the
improvement in the weighted gain.

For further improvement of the repeatability of the re-
peatability of the clustering performance, the results from the
hierarchical clustering can also be used for the generation of
prototypes, in order to achieve better distribution of the pro-
totypes among the dataset. This reduces the effect of noise
within the data, while also improving the initial cluster posi-
tions that the algorithm accepts, by choosing centres that are
implicitly well distributed throughout the data. The effect of
this is very clear when using hierarchical clustering for phase
generation. Figure 4 depicts the clustering performance of
hierarchical prototype generation using random and hierar-
chical phases. As can be seen, using the hierarchically de-
rived prototypes significantly improves the repeatability of
the algorithm, while also unifying the gain across all clus-
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Figure 3: Analysis of the effect of hierarchical phase gener-
ation on repeatability and performance over 100 runs.

ters. Additionally, the performance remains substantially the
same as the number of prototypes increases or or decreases.

In order to rely on the conclusion obtained above, clus-
tering validity methods [10] can be used for evaluating and
assessing the results of the proposed improvements of the
SOON algorithm. From Table 1, validation indices [10] val-
ues, I, CH, and DBnc indicate that the hierarchical phase with
hierarchical prototype selection is better than the hierarchical
phase with random prototype selection, and the latter is bet-
ter than the random phase with random prototype selection.
However, Dunn index [10] values do not agree with the above
conclusion, where it is very sensitive to the presence of noise
in datasets [11].

Additionally, the convergence time (on Xeon 2.8 GHZ
CPU with 512 MB ram using C code) is experimentally
tested for 100 runs. As illustrated in Table 1, the convergence
time of hierarchical phase with hierarchical prototype gener-
ations is the lowest one compared against random prototype
generations with random phases, or hierarchical phases.

Validation
indices

Random
phase
generation

Hierarchical
phase
generation

Hierarchical
phase &
protototypes

I [10] 1.7 1.8 2.8

CH [10] 467 471 690

DBnc [10] 0.98 0.89 0.62

Dunn [10] 0.0071 0.0070 0.0031

Convergence
time in sec

75 72 36

Table 1: Results of different validity indices & convergence
times
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Figure 4: Analysis of the effect of structured prototype selec-
tion on repeatability for, (a) Random phase with hierarchical
selection of prototypes, (b) Hierarchical phase with hierar-
chical selection of prototypes.

One of the main advantages of SOON algorithm is its
robustness in terms of the input parameters, where all data
points regarded as being members of the cluster will fall
within a preset distance which actually describes the degree
of the similarity between objects compared against the hi-
erarchical clustering algorithm or any partitional clustering
algorithms that depend on the number of clusters K as one of
the input parameters. Therefore, it is very difficult to get a
fair comparison between radius based clustering algorithms
and partitional clustering algorithms.

5. CONCLUSIONS

Two improvements to the initialisation of the SOON algo-
rithm have been proposed. As can be seen, the proposed use
of hierarchically derived initial phase and prototype values
causes significant improvements in the repeatability of the

clustering performance of the algorithm. Additionally, the
convergence of the algorithm is also significantly increased
as the phase curve is already ordered in terms of similarity,
meaning that fewer iterations are required for the algorithm
to reach convergence.
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