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ABSTRACT
This paper investigates the variable tap-length algorithm for
structure adaptation. Among existing algorithms, the Seg-
mented Filter (SF) and Gradient Descent (GD) algorithms
are of interest as both can track the tap-length variations
quickly. In this paper, we first compare the SF and GD algo-
rithms and show that each has advantages/disadvanges rel-
ative to the other. Then we propose an improved variable
tap-length algorithm which not only has better performance,
but also has less complexity, than existing algorithms. The
proposed algorithm has great significance in both theory and
applications.

1. INTRODUCTION

It is known that the minimum mean square error (MMSE)
is a monotonic non-increasing function of the tap-length, but
the decrease of the MMSE performance due to the tap-length
increase always becomes trivial when the tap-length is long
enough. Obviously it is not suitable to have a “too” long fil-
ter, as it not only unnecessarily increases the complexity, but
also introduces more adaptation noise. It is therefore desir-
able to search for the optimum tap-length that best balances
the steady-state performance and complexity. This is how the
term structure adaptation is derived.

Among existing variable tap-length algorithms, three of
them are of interest in this paper as others either aim at im-
proving the convergence behavior (e.g [1, 2, 3]) or can only
be implemented in a limit of applications (e.g. [4]). The
first is called Segmented Filter (SF) algorithm which was de-
scribed in [5], where the filter is partitioned into several seg-
ments and the tap-length is adjusted by one segment being
added to, or removed from, the filter according to the differ-
ence of the output error levels from the last two segments.
In [6], a variable tap-length algorithm based on gradient de-
scent search (GD) was proposed. Expressing the tap-length
adaptation in an explicit adaptation rule, the GD algorithm is
more flexible to implement than the SF algorithm. Recently,
the optimum tap-length has been defined quantitatively in
[7], in which a novel variable tap-length algorithm that can
converge to the optimum tap-length was also proposed. The
proposed algorithm, however, suffers from slow tap-length
convergence under some scenarios.

In section 2 of this paper, we will first describe two cost
functions that can be used to search for the optimum tap-
length, where the first arises directly from the optimum tap-
length definition in [7], and the second cost function may
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give a biased solution to the optimum tap-length but is eas-
ier to handle. We will further point out that the algorithm
proposed in [7] is based on the first cost function, and both
SF and GD algorithms are based on the second cost function.
In section 3, we will compare the SF and GD algorithm to
show that these two algorithm are equivalent under specific
constraints, and each has advantages/disadvantages relative
to the other. Finally an improved variable tap-length algo-
rithm will be proposed in section 4. Overcoming the prob-
lems of previous algorithms, the new proposed algorithm not
only has better performance, but also has less complexity,
than existing algorithms. In section 5, numerical simulations
will be given to verify the analysis.

2. OPTIMUM TAP-LENGTH

In [7], the optimum tap-length is defined as the smallest in-
teger No that satisfies:

x N−1− x N 6 E for all N > No, (1)

where x N is the steady-state MSE when the tap-length is N,
E is a small predetermined value. Note x N−1− x N may be
negative due to adaptation noise. This definition means that,
when the tap-length is larger than No, any two steady-state
MSE-s corresponding to two succussive tap-lengths can be
regarded as same. The sub-optimum tap-length, which is also
defined in [7], equals an integer M which is smaller than No
but satisfies x M−1− x M 6 E . The width of the suboptimum is
defined as the number of succussive suboptimum tap-lengths.

From (1), a cost function for searching No may be ob-
tained as:

min {N | x N−D − x N 6 E }, (2)

which is the minimum N that satisfies x N−D − x N 6 E , where
D is a positive integer. If D is larger than the maximum width
of the suboptimum, the solution of (2) can escape from the
suboptima and gives the optimum tap-length No.

In [7], a variable tap-length algorithm based on cost func-
tion (2) was proposed. Although it can converge to the op-
timum tap-length in the mean, the proposed algorithm suf-
fers from slow convergence under some scenarios. This is
because, on average, the algorithm adjusts the tap-length by
comparing x N(n) and x N(n−1), which are the steady-state MSE
corresponding to the tap-length at time instant n and n−1 re-
spectively. At the start (i.e. n = 0), however, x N(0) is not
available and must be initialized to an arbitrary value. If
this initialization is not appropriate, the tap-length adaptation
may be initially driven away from the optimum tap-length



due to the transient behavior of the tap-coefficients adapta-
tion.

Below we introduce a memoryless cost function for the
optimum tap-length searching that can circumvent the ini-
tialization problem.

Denoting wN and xN as the steady state tap-vector and
input-vector corresponding to the tap-length N respectively,
we define the segmented steady error as:

e(N)
M , d(n)−wT

N(1 : M) ·xN(1 : M), (3)

where 1 6 M 6 N, wN(1 : M) and xN(1 : M) are vectors
consisting of the first M coefficients of wN and xN respec-
tively. Then further defining the segmented steady MSE as
x (N)

M , E|e(N)
M |2, we construct a modified cost function as:

min {N | x (N)
N−D − x (N)

N 6 E ′}. (4)

For clarity of exposition, (2) and (4) are called cost function
1 and cost function 2 respectively.

If without the adaptation noise, it can be easily verify that
x (N)

N = x N and x (N)
N−D > x N−D , which means:

x (N)
N−D − x (N)

N > x N−D − x N , (5)

where “=” holds if and only if x N−D = x N . It is implied in
(5) that, if we let E ′ = E , the optimum tap-length from cost
function 2 may be overestimated. On another front, if x N and
x (N)

M are known, we can have same solutions for cost func-
tion 1 and 2 by choosing particular values of E ′ and E . In
practice, however, x N and x (N)

M are a priori unknown. Thus
cost function 2 always gives a bias solution of the optimum
tap-length obtained from cost function 1, but it leads to mem-
oryless variable tap-length algorithms which require no in-
formation about the steady MSE for the previous tap-length
N(n−1). In the following of this paper, we only consider the
cost function 2.

3. THE SF AND GD ALGORITHMS

In the SF algorithm [5], the filter is divided into L segments,
each with D coefficients. The tap-length is thus given by N =
LD . An exponential smoothing window with forgetting factor
b is used to track the accumulated squared error (ASE) of
the last two segments:

ASEk(n) ,
n

å
i=1

b n−i
(

e(N)
kD (i)

)2
, (6)

where k = L or L− 1, e(N)
kD (i) is defined in (3) which is the

output error from the kth segment at time instant i. Suppose
at time instant n, there are L(n) segments. At instant n+1, if
ASEL(n) 6 a upASEL−1(n), then L(n+1) = L(n)+1; else if
ASEL(n) > a dwASEL−1(n), then L(n + 1) = L(n)− 1. It is
clear that, in the average meaning, the SF algorithm adjusts
the tap-length by comparing the segmented steady MSE of
x (N)

LD and x (N)
LD −D , which is obviously based on the cost func-

tion 2.
If we let a up = a dw = 1, then the tap-length adaptation

rule for the SF algorithm can be expressed as:

N(n+1) = N(n)− D · sign(ASEL(n)−ASEL−1(n)), (7)

where N(n) = L(n)D . Substituting (6) into ASEL(n) gives:

ASEL(n)−ASEL−1(n)

=−
n

å
i=1

b n−i
(

e(N(n))
N(n) (i)+ e(N(n))

N(n)−D (i)
)
·x′TD (i)w′

D (i)

≈−
n

å
i=1

2 · b n−ie(N(n))
N(n)−bD /2c(i) ·x′TD (i)w′

D (i)

(8)

where we use the approximation that e(N(n))
N(n) (i) + e(N(n))

N(n)−D (i)

≈ 2 ·e(N(n))
N(n)−bD /2c(i) which equals twice of the output error from

the middle tap of the last segment, and x′D (i) and w′
D (i) con-

sist of coefficients of the last segment of the input vector
xN(n)(i) and tap-vector wN(n)(i) respectively. Note that b.c
rounds the embraced value to the nearest integer. Substitut-
ing (8) into (7) gives the tap-length adaptation rule for the SF
algorithm:

N(n+1) = N(n)+ D · sign

(
n

å
i=1

b n−i · e(N(n))
N(n)−bD /2c(i) · x ′TD (i)w ′

D (i)

)
.

(9)

With slight re-arrangements, the adaptation rule of the
GD algorithm (see [6]) can be expressed as:

N(n+1) = N(n)+ d · sign

(
1
T

n

å
i=n−T+1

e(N(n))
N(n)−bD /2c(i) · x ′TD (i)w ′

D (i)

)
,

(10)
where d is the step-size parameter for tap-length adaptation,
T is the size of the rectangular window used to obtained the
smoothed gradient, and both d and T are positive integers.
Note that (10) only applies at every T intervals.

It is clear that the only difference between (9) and (10)
is that the two approaches use different smoothing method,
which however can be replaced by each other, to estimate the
gradient. Thus if we let a up = a dw = 1 for the SF algorithm
and let d = D for the GD algorithm, the two algorithms be-
come identical.

The main advantage of the GD algorithm over the SF al-
gorithm is that the former can freely choose d , while the lat-
ter must have d ≡ D which implies the tap-length in the SF
algorithm has to be changed by D each time. With this addi-
tional degree of freedom, the GD algorithm is more flexible
in handling the local minima, and can more smoothly adjust
the tap-length, than its SF counterpart.

However, compared with the SF algorithm, the GD algo-
rithm imposes a new constraint by implying a up = a dw = 1.
With this constraint, the cost function on which the GD algo-
rithm is based becomes:

min {N | x (N)
N−D − x (N)

N 6 0}. (11)

It is clear by comparing (11) with (2) and (4) that the GD
algorithm may overestimate the optimum tap-length. More-
over, we observe that the difference between x (N)

N−D and x (N)
N

usually becomes very small when N À No. With inaccurate
estimate of the steady MSE, this may cause the tap-length
“wandering” about in the range which is larger than No. Thus
if the initial tap-length N(0) is much larger than No, or if
the optimum tap-length decreases due to channel variation,
it may take a long time for the GD algorithm to converge.



This problem is more serious when the adaptation noise is
low which may caused by choosing a small step-size for the
LMS algorithm, since then x (N)

N−D and x (N)
N are almost identi-

cal for N À No. On the contrary, the SF algorithm can over-
come this problem by choosing the parameters of a up and
a dw appropriately.

4. FRACTIONAL TAP-LENGTH ALGORITHM

The “wandering” problem of the GD algorithm is similar to
that with the LMS algorithm when it is implemented using
fixed point parameters and data. A classical solution is to
implement the leaky LMS algorithm where a leaky factor is
introduced in the adaptation rule. In this section, we show
that, if we relax the constraint that the tap-length must be in-
teger and introduce a concept of pseudo fractional tap-length,
we can use a similar approach as that for the leaky LMS algo-
rithm to overcome the “wandering” problem of the tap-length
adaption. The concept of the fractional tap-length was first
proposed in [7] but based on the cost function 1.

To be specific, we define n f as the pseudo fractional tap-
length which can take real values, and construct the following
adaption rule:

n f (n+1) = (n f (n)− a )− g
[(

e(N(n))
N(n) (n)

)2−
(

e(N(n))
N(n)−D (n)

)2
]
,

(12)
where a is the leaky factor which satisfies a ¿ g , and both a
and g are small positive numbers. Initially we have n f (0) =
N f (0). The true tap-length N f (n) is adjusted according to:

N(n+1) =
{ bn f (n)c, |N(n)−n f (n)|> d

N(n), otherwise (13)

where b.c rounds the embraced value to the nearest integer.
To make sense of (12), we should ensure n f (n) > D +1. Note
that unlike (9) and (10), it is not necessary to have a “sign”
operator in (12).

In the FT algorithm, we can freely choose the step-size
parameter d and the parameters of a and g which have sim-
ilar effects as a up and a dw in the SF algorithm. Thus the
FT algorithm retains all the advantages of the SF and GD
algorithms. Moreover, not like the algorithms proposed in
[5, 6, 7], the FT algorithm uses instantaneous errors rather
than the averaged errors for the tap-length adaptation. Thus
it has significantly less complexity than the existing algo-
rithms.

5. NUMERICAL SIMULATIONS

In this section, as an example, we will compare the FT al-
gorithm with the SF and GD algorithms in the application of
adaptive system modelling.

5.1 Simulation setup

For comparison, we use the same system as that in [7]. To be
specific, two unknown systems are tested, each with transfer
functions of Wo = W1 and Wo = W2 respectively, where:

W1(z) =
1+0.2z−8

1−0.7z−1 , W2(z) =
1

1−0.3z−1 . (14)

The impulse response of Wo(z) has an infinite length, and
thus any special filter length has not been privileged. The in-
put signal is a white Gaussian noise passing through a spec-
trum shaping filter with transfer function of H(z) = 0.35 +

z−1 + 0.35z−2. The Gaussian noise added to the unknown
system provides a signal-noise-ratio (SNR) of 20dB.

In all simulations, normalized LMS (NLMS) algorithm is
used for tap coefficients adaptation, because as was pointed
out in [7], the NLMS algorithm is more robust to implement
than the LMS algorithm when a variable tap-length algorithm
is used. The step-size of the NLMS algorithm is set as 0.2
for all experiments unless otherwise specified.

For fair comparison, the rectangular window with size of
T = 10 is used to obtain both the ASE in the SF algorithm
and the smoothed gradient in the GD algorithm. The pa-
rameters used in the tested variable tap-length algorithms are
shown in Table 1.

D d T a up a dw a g
SF 4 – 10 0.8 1 – –
GD 4 1 10 – – – –
FT 4 1 – – – 0.03 1

Table 1: Parameters for the variable tap-length algorithms.

5.2 Simulation results and discussions

Fig. 1 shows the curves of the steady-state MSE x N with
respect to the tap-length N. It is clearly shown that, when
Wo(z) =W1(z), the optimum tap-length is around 15, the sub-
optimum tap-lengths are {6,7,8}; but when Wo(z) = W2(z),
the optimum tap-length is around 4 and no sub-optimum tap-
lengths exist.
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Figure 1: The curves of the steady-state MSE with respect to
the tap-length.

Fig. 2 shows the tap-length learning curves with differ-
ent initializations based on one typical simulation run for the
SF, GD and FT algorithms respectively. In this experiment,
to magnify the ”wandering” effect of the GD algorithm, we
deliberately choose a small step-size of 0.05 for the NLMS
algorithm to give a small adaptation noise. As expected,
the GD algorithm overestimates the optimum tap-length, and
tap-length is “wandering” around in the high value areas es-
pecially when the initial tap-length N(0) = 30. On the con-
trary, both SF and FT algorithms converge fast to around the
optimum tap-length for either N(0) = 30 or N(0) = 5, but
the FT algorithm clearly has a much smoother learning curve
than the SF algorithm because the former can freely choose
the step-size parameter of d .
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Figure 2: The learning curves of N(n) based on one typical
simulation run when Wo(z) = W1(z), where the step-size for
the NLMS algorithm is deliberately set as small as 0.05.

Fig. 3 shows the averaged tap-length learning curve
over 10 independent runs in a time varying scenario, where
Wo(z) = W1(z) when n < 2000 or n > 4000, and Wo(z) =
W2(z) when 2000 6 n < 4000. It is clearly shown that the SF
and FT algorithms have similar transient behaviors, and as
expected, both converge faster than the GD algorithm espe-
cially when Wo(z) is changed from W1(z) to W2(z) at time in-
stant 2000. On another front, the GD algorithm has smoother
learning curve than the SF algorithm, though the FT algo-
rithm has the smoothest learning curve among all. Moreover,
it can also be observed that both SF and GD algorithm over-
estimate the optimum tap-length. Note that unlike the GD
algorithm, the SF can overcome the overestimate problem by
adjusting the values of parameters a up and a dw appropriately.
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Figure 3: The averaged tap-length learning curves over 10
independent simulation runs, where Wo(z) =W1(z) when n <
2000 or n > 4000, and Wo(z)=W2(z) when 2000 6 n < 4000.

Fig. 4 shows the MSE learning curves corresponding to
Fig. 3. For better exposition, the MSE learning curve, which
is obtained over 10 independent runs, is further averaged by
a rectangular window with size of 50. It is clearly shown that
the SF and FT algorithms have similar transient behaviors in
MSE leaning curves, though the latter seems to be slightly
better than the former, while both are better than the GD al-
gorithm. This corresponds to their transient behaviors of the
tap-length adaptation respectively. On another front, all 3
algorithms have similar steady-state MSE performance be-
cause all algorithm can converge to the optimum tap-length.

In general, the FT algorithm has much better transient
and steady-state behaviors for the length adaptation than its

0 1000 2000 3000 4000 5000 6000
10

−3

10
−2

10
−1

10
0

10
1

No. of symbols

E
 |e

2 (n
)|

SF algorithm
GD algorithm
FT algorithm

Figure 4: The MSE learning curves corresponding to Fig. 3.

SF and GD counterparts.

6. CONCLUSION

This paper compared the SF and GD algorithms to show that
each has advantages/dis-advantages relative to the other, and
proposed an improved variable tap-length algorithm using
the concept of the fractional tap-length. The proposed FT
algorithm not only has much better performance but also has
less complexity than existing algorithms. This provides a
significant advance towards the practical implementation of
flexible, structurally adaptive filters for real-time application
in a number of scenarios.
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