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ABSTRACT

This paper presents an improvedmorphological approach for
baseline wander correction in electrocardiogram (ECG) sig-
nals, with emphasis on preserving all required clinical infor-
mation of the original signal. The algorithm consists of only
one stage of morphological processing (while similar mor-
phological filters need two stages). The morphological oper-
ators are applied to approximate the baseline drift. Then it is
subtracted from the input signal to leave a corrected-baseline
signal. The performance of the algorithm is evaluated with
real ECGs containing artificial and real baseline drift. Com-
paredwith all existingmorphologicalmethods, there is a sub-
stantial improvement, especially in reducing distortion of the
baseline waveform in any part of the signal. The experimen-
tal results prove that the proposed method is less sensitive
to the size of the structuring element if a reasonable size is
considered.

Keywords: Morphological filtering; ECG; weighted me-
diated morphological filters.

1. INTRODUCTION

When the patient moves or respires while recording his (her)
electrocardiogram (ECG) signal, baseline wander (drift) is
often generated which is added to the original signal. The
recorded ECG signal is also distorted by 50 (60)-Hz [1] and
impulsive noises (from powerline [2] and skeletal muscle
contraction, respectively) [3]. These artifacts should be re-
moved as a preprocessing stage prior to any subsequent au-
tomatic processing for clinical identification, classification,
interpretation, etc, [4] -[10]. Linear filtering was first attempt
to normalize the baseline ([11]). Also cubic splines baseline
estimation and correction has been investigated ([4]).

An efficient morphological approach has been proposed
in [5] for impulsive noise suppression and background nor-
malization in ECGs (referenced as method 1 in this paper).
Trahanias ([12]) has applied a variant of this technique for
QRS complex detection. Although this approach is promis-
ing in terms of robustness and computational efficiency, it
introduces distortions to the PR and QT segments and Sun
et. al. confirms it as well in [6] and introduce a modifica-
tion to this method, called improvedmorphological approach
to background normalization of ECG signals (referenced as
method 2 in this paper), in attempt to obtain a normalized
ECG with less such distortions. Sedaaghi et. al. ([8]) have
proposed a rather similar approach with the same efficiency
(also called method 2 in this paper). However, in this paper
the author employs the “weighted mediated morphological
filters” (introduced in [13]) as a more robust and efficient
tool for baseline drift correction in ECG signals compared
with other morphological approaches.

The organization of the paper is as follows. Section 2
introduces ECG preprocessing. The proposed method is dis-
cussed in Section 3. Section 4 highlights the empirical re-
sults. Finally section 5 concludes the paper.

2. ECG PREPROCESSING

In method 1 ([5]), an average of open-closing and close-
opening is first applied to get an approximation of the base-
line wander. The size of the structuring element is greater
than any important data in ECG (like QRS complexes, ST
interval, P and T waves, etc.). Then, the result is subtracted
from the input signal to get a signal with corrected baseline.

Generally, the baseline drift correction is achieved by es-
timating the baseline drift and subtracting it from the sig-
nal. Classical morphological ECG baseline drift estimation
is done with the price of smoothing the ECG features such
as P wave, QRS complex and T wave. Although, the ECG
has particular rhythmic nature and its features are relatively
specific, the morphological algorithm used in method 1 esti-
mates the baseline without any attention to the certain geo-
metrical structure of the ECG signal and manages the ECG
features similar to noise components that do not have cer-
tain shape and order [8]. Furthermore, the QRS complex,
due to its short duration and long amplitude, resembles an
edge. Due to the particular nature of morphological filters,
the edges and local maximum and minimum points are af-
fected. Consequently in classical morphological baseline
drift estimation, the maximum error of the estimation is in
the QRS neighborhood, i.e., the location of ST segment and
J point. ST segment and J point are so important in clin-
ical observations, therefore they should not be modified by
baseline drift correction procedure [8].

In method 2 ([6] and [8]), QRS complexes are first ex-
tracted by applying an average of open-closing and close-
opening using a structuring element with a shorter duration.
Then an estimate for the size of the structuring element of
the next stage is obtained. In the third attempt, the same op-
erators but with new structuring element is applied. Then the
result is subtracted from the signal of the previous stage to
correct the baseline drift. The simplified block diagram of
method 2 is illustrated in Figure 1.

3. THE PROPOSEDMETHOD

The proposed method (also called method 3 in this paper)
corrects the baseline wander only in one stage, but at the
same time, more efficiently. Later, the experimental results
will prove the idea.

The operators (called weighted morphological operators)
are defined as follows. Let x and g denote the 1-D gray-
scale input signal buried in noise and the structuring element,



respectively. Dx and Dg denote their domains. Weighted
mediated erosion, dilation, opening, closing, open-closing,
close-opening, denoted WTMDER, WTMDDI , WTMDOP,
WTMDCL, WTMDOC, WTMDCO, respectively, are defined
as follows [13]:

WTMDER(x,g,w,n) =
min{x(n+ v0)−g(v0),WTMED0(w)}
WTMDDI(x,g,w,n) =
max{x(n− v0)+g(v0),WTMED0(w)}

(1)

where v0 is the location of the center of g, WTMED0(w) is
the weighted median of x in a neighborhood defined by the
size of g and the weight factor defined byw, except that x(n+
v0) in calculating erosion (x(n− v0) in dilation) is replaced
with the previous WTMED0(w) (for the first calculation it
takes a default value).

WTMED0(w) is defined as follows.

WTMED0(w) =MEDIAN
[|W0|�sgn(W0)x(n), , . . . , |WM|�sgn(WM)x(n−M)] (2)

where w = {W1,W2, . . . ,WM}, and Wi�xi = xi,xi, . . . ,xi
︸ ︷︷ ︸

Wi times

and

sgn(Wi) denotes the sign ofWi.
The rest of the operators are similarly defined:

WTMDOP(x,g,w,n) =
WTMDDI(WTMDER(x,g,w,n),g,w,n),
WTMDCL(x,g,w,n) =
WTMDER(WTMDDI(x,g,w,n),g,w,n),
WTMDOC(x,g,w,n) =
WTMDCL(WTMDOP(x,g,w,n),g,w,n),
WTMDCO(x,g,w,n) =
WTMDOP(WTMDCL(x,g,w,n),g,w,n).

(3)

Figure 2 illustrates the block diagram of the baseline drift
correction task with weighted mediated morphologicalfilters
(method 3). A suitable structuring element is applied. This
algorithm is not very sensitive to the size of the structuring
element.

3.1 Properties of the operators

The operators, denoted WTMD(x,g,w,n), have the follow-
ing properties:
1. Increasing: They are all increasing:

x1(n) < x2(n) ⇒WTMD(x1,g,w,n) <WTMD(x2,g,w,n)
2. Extensive: Weighted mediated dilation and closing are

extensive:
WTMDDI(x,g,w,n) � x(n),
WTMDCL(x,g,w,n) � x(n).
However, weighted mediated erosion and opening are
anti-extensive:
WTMDER(x,g,w,n) � x(n),
WTMDOP(x,g,w,n) � x(n).

3. Idempotent:Weightedmediated erosion and dilation are
not idempotent:
WTMDDI(WTMDDI(x,g,w,n),g,w,n) �=WTMDDI(x,g,w,n),
WTMDER(WTMDER(x,g,w,n),g,w,n) �=WTMDER(x,g,w,n).
Weighted mediated opening and closing are idempotent:
WTMDOP(WTMDOP(x,g,w,n),g,w,n) =WTMDOP(x,g,w,n),
WTMDCL(WTMDCL(x,g,w,n),g,w,n) =WTMDCL(x,g,w,n).
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Figure 1: Simplified block diagram of ECG preprocessing
(method 2).
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Figure 2: Block diagram of ECG preprocessing (the pro-
posed method (3)).

These results are consistent with the established theory
of mathematical morphology. For more detailed expressions
about the above properties, the reader is invited to refer to
the literature, e.g., [14, 15]. A morphological filter should
be increasing, idempotent, and extensive or anti-extensive
[14]. Therefore the weighted mediated opening, closing,
open-closing, close-opening can be used to construct a mor-
phological filter, because they possess all required properties.
However the weighted mediated dilation and erosion are not
considered as morphological filters, but morphological oper-
ators, as they are not idempotent.

4. EMPIRICAL RESULTS

The following definition is used to explain each of the meth-
ods:

1. Method 1: classical morphological filtering [5].
2. Method 2: improved classical morphological filtering

[6].
3. Method 3: weighted mediated morphological filtering

[13] (the proposed method).

Figure 3 shows the original and (artificially) corrupted
ECG signal, respectively. The trend is to remove the base-
line drift. Figures 4 and 5 illustrate the performance of three
methods. The signals have been zoomed in Figure 5 (the
first 5 seconds of the signals are presented). It is clear that
the results of method 1 is not acceptable, as it causes severe
distortions. Some of the problems with method 2 as well as
method 1 are marked with arrows in figures. The dominance
of method 3 is clear.

A real corrupted ECG signal is illustrated in Figure 6.
The better performance of the proposed method have been
proved in Figures 7 and 8. In Figure 7, high-frequency noise
is first removed by small-size structuring element (in all three



methods), and then, the baseline drift is corrected.
Figure 8 is about the situation when the attempt to higher

frequency noise removal is done as the last stage. The results
prove that it is better to correct the baseline wander at first
and then try to remove the higher frequency noise compo-
nents. This could be a valuable recommendation for similar
research topics.

Also other results show that the proposed method is less
sensitive to the size of the structuring element while method
2 relies on the approximation of the size of the structuring el-
ement. Due to the limitation of the paper, the results have not
been illustrated as the processed signal will look the same for
different structuring element sizes in method 3. We have got
similar results when this size varies from 29 up to 59 for re-
moving the the baseline drift and 3 to 7 for higher frequency
components. This variation of the size of the structuring ele-
ment will cause other methods to fail.

For all cases, a flat (symmetric) structuring element of
size 1× 3 has been applied as the small-size required (The
weight parameter, w, for method 3 is [1,2,1]). The large size
is about 1× 51 (with an arbitrary values for w of the same
size).

5. CONCLUSIONS

In this paper, a more efficient approach to background nor-
malization of ECG signals has been proposed using weighted
mediated morphological filters. Results with less distortion
and more accurate baseline estimation were achieved while it
was proved that the proposed method requires less stages for
preprocessing (roughly half of the processing time required
by method 2) as it does not need to remove the QRS com-
plexes at first prior to baseline correction. Only one stage
is enough. The future work is to improve the efficiency,
even more, using Genetic Algorithms to design the optimum
weights for the filters similar to the research as addressed in
[16], and even adaptive filtering [17].
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Figure 3: Original and (artificially) corrupted signal.
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Figure 4: Baseline drift correction with three methods.
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Figure 5: Baseline drift correction with three methods
(zoomed).
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Figure 6: A real corrupted ECG signal.
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Figure 7: The preprocessing with three methods for remov-
ing high frequencynoise at first and next, the baseline wander
correction.
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Figure 8: The preprocessing with three methods for the base-
line wander correction at first and then, high frequency noise
removal.
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