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ABSTRACT
In many areas of signal processing, the trend of addressing
problems with increased complexity continues. This is best
reflected by the forms of the models used for describing phe-
nomena of interest. Typically, in these models the number
of unknowns that have to be estimated is large and the as-
sumptions about noise distributions are often non-tractable
for analytical derivations. One major reason that allows re-
searchers to resolve such difficult problems and delve into
uncharted territories is the advancement of methods based
on Monte Carlo simulations including Markov chain Monte
Carlo sampling and particle filtering. In this paper, the objec-
tive is to provide a brief review of the basics of these methods
and then elaborate on the most recent advances in the field.

1. INTRODUCTION

A large number of statistical signal processing applications
including filtering, estimation, and detection require evalu-
ation of integrals, optimization and simulation of stochas-
tic systems. These methods have not only played a promi-
nent role in the field of signal processing but also in physics,
econometrics, statistics, and computer science.

A critical step in many signal processing algorithms that
require stochastic simulations is the generation of samples
from a multivariate probability distribution p(xjy), where x
is a vector of unknown states or parameters, and y represents
a vector of observations. Take for example the need to com-
pute the expectation of a function g(X), where X is a continu-
ous random variable with distribution p(x) (here we simplify
matters by assuming that X is one dimensional). Thus, we
need to find

µg =
Z

g(x)p(x)dx: (1)

In many signal processing problems g(x) = x, p(x) repre-
sents the a posterior density of x, that is p(xjy), and the in-
tegral is the minimum mean-square error (MMSE) estimate
of x. Suppose now that the integration in (1) is analytically
intractable. Then we could resort to numerical integration
applying the Monte Carlo method [67]. The idea is to draw
samples from p(x), x(m), and evaluate the integral by

µ̂g =
1
M

M

∑
m=1

g(x(m)) (2)

where M is the total number of generated samples. Note that
the approximation (2) of the integral in (1) implies that the
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density p(x) is approximated according to

p(x) =
1
M

M

∑
m=1

δ(x� x(m)) (3)

where δ(�) is the Dirac delta function. It can be shown that
the estimate µ̂g converges to µg almost surely as M ! ∞
[68]. In addition, if the variance of g(X) is finite and equal
to σ2

g , then the variance of µ̂g is σ2
g =M. By invoking central

limit theorem, one can also show that the distribution of µ̂g
is Gaussian and centered at µg.

This simple example shows that drawing samples from a
distribution can be quite advantageous. In fact, if we draw
samples from a distribution p(x), we can use them for ob-
taining various types of estimates, not just the MMSE esti-
mate, and we can carry out other important signal processing
operations such as model selection and detection. However,
the operation of drawing samples from p(x) is in general not
easy. The generation is especially difficult if the dimension
of x is large and p(x) is not a standard distribution. In such
cases, we can use methods known as rejection, MCMC, and
importance sampling. In this paper we focus on the latter
two, first by providing their basic descriptions, and then by
elaborating on some of their more recent advances. It should
be noted that these methods are considered primarily as tools
of the Bayesian methodology. However, they are also ap-
plied in other optimization techniques. For example, MCMC
sampling is the basis of the optimization technique known as
simulated annealing [48].

The bibliography on this subject have grown signifi-
cantly. Therefore, it is impossible to cite all the relevant lit-
erature, and as a result many good papers have been omitted.
We primarily focused on journal articles that have been pub-
lished after 2002 and that have signal processing contents.

2. BASICS

2.1 Markov chain Monte Carlo sampling

MCMC sampling is considered to be the most successful
and influential Monte Carlo method in computational sci-
ence [10]. We usually apply MCMC sampling when we can-
not generate samples directly from a multivariate distribution
p(xjy) but can evaluate p(xjy) up to a proportionality con-
stant. The key idea of MCMC methods is to generate samples
by running an ergodic chain whose equilibrium distribution
is the desired distribution [17, 33, 55, 68]. An aperiodic and
irreducible Markov chain has the property of converging to
a unique stationary distribution which does not depend on
the initial sample or the iteration number j. If P(x ( j)jx( j�1))
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is the transition kernel of the chain and p(x) is the desired
stationary distribution, and if the chain satisfies the detailed
balance equation

p(x( j�1))P(x( j)jx( j�1)) = p(x( j))P(x( j�1)jx( j)) (4)

it will produce samples, which after convergence, are from
the stationary distribution p(x) [33].

It turns out that the generation of samples from the re-
quired distribution is remarkably easy. If a candidate sample
x
� is proposed by the density π(�jx( j�1)) where x( j�1) is the

last generated sample, then the probability of accepting it is

α (x( j�1)
;x

�) = min
�
1;α0

�
(5)

where

α0 =
p(x�)π(x( j�1)jx�)

p(x( j�1))π(x�jx( j�1))
: (6)

The new sample is

x
( j) = φ(x( j�1)

;U)

where φ(�; �) is called the updating function that satisfies

Prob
�

φ(x( j�1)
;U) = x( j)

�
= P(x( j)jx( j�1)) (7)

and U is a random variable defined on an arbitrary proba-
bility space. Typically U is drawn from the uniform density
function defined on the interval (0,1) and

φ(x( j�1)
;U) = x( j) =

�
x
�

; if U � α (x( j�1)
;x

�)
x
( j�1)

; otherwise
(8)

where α (�) is given by (5).
Three standard MCMC schemes are the Metropolis [59],

the Metropolis-Hastings [39] and the Gibbs sampling meth-
ods [30]. If the proposal density is symmetric, then the
method is known as the Metroplis sampler, and if it is
non-symmetric, as the Metropolis-Hastings algorithm. Fi-
nally, the Gibbs sampler is a special case of the Metropolis-
Hastings algorithm that generates samples from conditional
densities which make the probability of acceptance equal to
one.

There are several important issues related to the use of
these three algorithms. The algorithms are iterative in nature
and therefore their convergence must be addressed. All the
schemes usually discard the first M samples, a period called
burn-in, and to determine M, convergence diagnostics are ap-
plied [15, 29, 68]. Of practical importance, too, is the stop-
ping time of the chain. One would like to run the chain long
enough to obtain the desired accuracy, so its characterization
is also necessary. Finally, another concern is the correlation
of the generated samples. Since it is often important to get
independent and identically distributed samples, either sev-
eral chains are run simultaneously or only every k-th sample
from the chain is used, where the value of k is carefully de-
termined.

A nontrivial extension of MCMC sampling is the re-
versible jump MCMC (RJMCMC) sampler [36]. The RJM-
CMC sampler can jump between parameter spaces with dif-
ferent dimensions. Typically the parameters with different

dimensions correspond to different models. Thus, the gen-
eralization of the MCMC scheme amounts to allowing the
chain not only to explore the parameter space of one model
but spaces of many more models. This implies that RJM-
CMC can be applied to problems where, besides estimation
of unknown parameters of a model, the selection of model
is also of interest [6]. The latter problem includes tasks like
detection of signals, multiple changepoint problems, object
recognition, and variable selection.

Let the visited model and its parameters at the ( j�1)�th
iteration of the chain be M( j�1)

l
and x( j�1)

l
, respectively. Sup-

pose that at the j�th iteration there is a proposal to move to
the model M( j)

k
. One way to construct an RJMCMC is to

allow a transition which is accepted with probability

α (M( j�1)
l

;M( j)
k
) = min

�
1;α0

�
: (9)

where

α0 =
p(yjx( j)

;M( j)
k
)p(x( j)

;M( j)
k
)

p(yjx( j�1)
;M( j�1)

l
)p(x( j�1)

;M( j�1)
l

)

�
π(x( j�1)

;M( j�1)
l

jx( j)
;M( j)

k
)

π(x( j)
;M( j)

k
jx( j�1)

;M( j�1)
l

)
(10)

and π(�j�) represents proposal distribution. Thus, the nature
of the method is preserved except that it is much more com-
plex. One has to explore not just one parameter space but
often many more.

The importance of the RJMCMC sampling is in that it
allows inference in situations of uncertainties about both, the
model parameters and the used models. From the frequency
of the visits of the sampler to the various models, we can es-
timate the posterior probabilities of these models. Thus, the
method can be used for model selection, model evaluation,
and model averaging.

2.2 Particle filtering

Particle filtering is a sequential Monte Carlo method intended
for use in sequential signal processing. Besides Bayes theory,
it exploits the principle of importance sampling. The interest
in particle filtering stems from its potential for coping with
difficult nonlinear and/or non-Gaussian problems.

The basic idea in particle filtering is the recursive ap-
proximation of relevant probability distributions with dis-
crete random measures. The earliest applications of sequen-
tial Monte Carlo methods were in the field of growing poly-
mers [38, 70]. Later they expanded to other disciplines in-
cluding physics and engineering. Sequential Monte Carlo
methods found limited use in the past, except for the last
decade, mostly due to their very high computational com-
plexity and the lack of adequate computing resources. The
rapid advancement of computers in the last decade and the
outstanding potential of the particle filters have made them a
very attractive research topic. The current interest in particle
filtering for signal processing applications was brought on by
[35]. Recent reviews and accounts of new developments on
the subject can be found in [8, 26, 27].

Standard description of problems addressed by particle
filters is given by a dynamic state-space model represented
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by state-space and observation equations, i.e.,

xt = ft (xt�1;ut )
yt = gt(xt ;vt)

(11)

wherext is a state vector, ft (�) is a system transition function,
yt is a vector of observations, gt(�) is a measurement func-
tion, ut and vt are noise vectors, and the subscript t denotes a
discrete time index. The first equation is known as state equa-
tion, and the second, as measurement equation. The standard
assumptions are that the analytical forms of the functions and
the distributions of the two noises are known. Based on the
observations yt and the assumptions, the objective is to esti-
mate xt recursively.

The method that has been investigated the most and that
has been most frequently applied for estimating x t in prac-
tice is the Kalman filter [3], which is optimal in the important
case when the equations are linear and the noises are inde-
pendent, additive and Gaussian. In this situation, the densi-
ties of interest (filtering, predictive, or smoothing) are also
Gaussian and the Kalman filter can compute them exactly
without approximations. For scenarios where the models are
nonlinear or the noise is non-Gaussian, various approximate
methods have been proposed of which the extended Kalman
filter is perhaps the most prominent [3].

Particle filtering has become an important alternative to
the extended Kalman filter. With particle filtering the approx-
imation is not in the linearizations around current estimates
but rather approximations in the representation of the desired
distributions by discrete random measures.

If the distribution of interest is p(x), we approximate it
by a random measure

χ =
n
x
(m)

;w(m)
oM

m=1
(12)

where x(m) are the particles, w(m) are their weights, and M
is the number of particles used in the approximation. The
measure χ approximates the density p(x) by

p(x)�
M

∑
m=1

w(m)δ(x�x(m)) (13)

where δ(�) is the Dirac delta function. With this approxima-
tion, similarly as in (2) and (3), the computations of expecta-
tions are simplified to summations.

The next important concept used in particle filtering is the
principle of importance sampling. Suppose we want to ap-
proximate a density p(x) with a discrete random measure. If
we can generate the particles from p(x), each of them will be
assigned a weight equal to 1=M. When direct sampling from
p(x) is intractable, one can generate particles x(m) from a
density π(x), known also as importance function, and assign
normalized weights according to

w�(m) =
p(x)
π(x)

; and w(m) =
w�(m)

∑M
i=1 w�(i)

: (14)

Let x0:t � fx0;x1; � � � ;xtg represent a state trajectory
from time 0 to t, and let y1:t have analogous meaning.
Suppose now that the posterior distribution p(x0:t�1jy1:t�1)
is approximated by the discrete random measure χ t�1 =

fx(m)
0:t�1

;w(m)
t�1
gM

m=1. The discrete random measure χ t�1 is
modified to χt after yt is observed by exploiting the prin-
ciple of importance sampling. First, particles x(m)t are gener-
ated and x(m)

0:t
is formed, and then the weights are updated to

w(m)
t .

More specifically, the first step amounts to drawing sam-
ples from the importance function π(�), i.e.,

x
(m)
t � π(xt jx

(m)
0:t�1

;y1:t) (15)

and the second step to computing the weights according to

w(m)
t ∝

p(yt jx
(m)
t ) p(x(m)t jx(m)

t�1
)

π(x(m)t jx(m)
0:t�1

;y1:t)
w(m)

t�1
: (16)

A major problem with particle filtering is that the dis-
crete random measure degenerates quickly. After only sev-
eral samples, all the particles except for a very few are as-
signed negligible weights. The degeneracy implies that the
performance of the particle filter degrades considerably. De-
generacy, however, can be reduced by using good importance
sampling functions and resampling.

Resampling is a scheme that eliminates particles with
small weights and replicates particles with large weights. In
principle, it is implemented as follows:

1. Draw M particles, x�(m)t from the discrete distribution χ t .

2. Let x(m)t = x�(m)t , and assign equal weights (1=M) to the
particles.

3. RECENT ADVANCES IN MARKOV CHAIN
MONTE CARLO SAMPLING

In the past decade, the MCMC methodology has continued
to attract the attention and important advances have been
made both in theory and in its applications. Even though this
method is computationally intensive and has issues that need
very careful consideration before it is applied, its adoption
by the scientific community has been outstanding.

3.1 A generalized Markov sampler

An important recent development in the theory of MCMC
sampling has been the emergence of a new MCMC sampler
which generalizes not only the Metropolis-Hastings and the
Gibbs samplers, but also the RJMCMC sampler [47]. In fact,
the proposed sampler is a natural extension of the Gibbs sam-
pler, which is somewhat surprising if we recall the previous
beliefs that the Gibbs sampler is inadequate for use in a gen-
eral setting of model switching.

We briefly describe the generalized Gibbs sampler. This
sampler generates a chain in a space I�X, where I is an
index set and X is the target set (the parameter space from
which we sample). Suppose that G := fx(1);x(2); � � �g is a
Markov chain obtained by the standard Gibbs sampler which
operates in a d�dimensional space. Then, each element of
x 2 Rd is updated to form fx( j)

1
;x( j)

2
; � � � ;x( j)

d
g. The process

G0 = fx(1)
1

;x(1)
2

; � � � ;x(1)
d

;x(2)
1

;x(2)
2

; � � �g has the same limiting
distribution as G but is not a Markov chain. We can form the
process G00 = f(1;x(1)

1
);(2;x(2)

2
); � � � ;(d;x(1)

d
);(1;x(2)

1
); � � �g

which is a Markov chain in I�X. So the Gibbs sampler
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is a Markov chain in the space I�X. The projection of its
limiting distribution onto X is the required limiting distribu-
tion.

When we want to run the Gibbs sampler over parameter
spaces with different dimensions, we need to introduce four
new entities. The first is the set Φ(x) which is a catalogue
of types of transitions that one may make from the element
x. In the case of the standard Gibbs sampler, it is Φ(x) =
f(1;x);(2;x); � � � ;(d;x)g: The transition from x at a given
step is defined by a transition distribution Q((i;x);(m;y)).
Once the type of transition is selected, we need a set of tran-
sitions for that type. We denote it by Ψ((i;x)). On this set,
we define a distribution R((i;x);(m;y)), which is the fourth
quantity that is needed. With these notions, we can summa-
rize the algorithm as follows:

1. Intialization. Start with an arbitraryU(0) = (i;x).
2. Q step: Given U( j) = (i;x), generate V 2 Φ(x) from

the distribution Q((i;x); �).
3. R step: GivenV = (m;y), generateW 2Ψ(m;y) from

the distribution R((m;y); �).
4. Prepare for the next iteration: SetU( j+1) =W.

The algorithm generates a Markov chain fU (0)
;U

(1)
;

U
(2)

; � � �g = f(i(0);x(0));(i(1);x(1));(i(2);x(2)); � � �g. The
limiting distribution of x( j) as j ! ∞ is the stationary dis-
tribution of the chain provided it is irreducible and aperiodic.

The above scheme is a generalized Gibbs sampler. With
minor modifications one can obtain the generalized Metropo-
lis and Hastings samplers. For more details, see [47].

3.2 Other developments

One difficulty with the MCMC methods is the impediment of
finding a good proposal transition kernel. The implications
of inadequate kernel are slow convergence of the chain and
poor exploration of the parameter space. Novel methods have
been proposed which generalize the Metropolis algorithm in
that more than one proposals are made for moving the chain,
for example, see [57].

As already mentioned, the convergence of the Markov
chains is an important practical issue in applications. In [19],
the convergence of several MCMC algorithms is studied for
problems in digital communications. In [74], a novel method
for visualizing convergence is proposed.

MCMC sampling has continued to find applications in a
large number of areas. One of them is image and video re-
trieval. For example, in [58] an MCMC stochastic gradient
algorithm is proposed for finding representations that have
optimal retrieval performance. MCMC sampling is used in
[49] for automated restoration of archived sequences. There,
the problem is to simultaneously treat missing data and mo-
tion in degraded video sequences.

Medical imaging is another field where MCMC and
RJMCMC have been applied. In [78], MCMC sampling is
used for obtaining the full posterior distribution of the mod-
els of functional magnetic resonance image data and in [24]
RJMCMC simulation is exploited to detection of brain le-
sions from magnetic resonance image data.

Other areas that have benefited recently from MCMC
methods are machine learning [5], pattern analysis [72], neu-
ral networks [23, 62], behavioral studies [46], phylogenetic
analysis [1, 63], multiuser detection in CDMA [75, 79], com-
munication networks [37], seismology [69], and synthetic

aperture radar imagery [66, 73].

4. RECENT ADVANCES IN PARTICLE FILTERING

4.1 Gaussian particle filters

Recently, a new type of particle filters called Gaussian par-
ticle filters (GPFs) has been proposed [51]. These parti-
cle filters approximate the predictive, p(xt jy1:t�1), and fil-
tering, p(xt jy1:t), densities by Gaussians whose mean vec-
tors and covariance matrices are computed from the parti-
cles. If at time t � 1 we approximate the filtering density
by N(µt�1;�t�1) and at time t the predictive density by
N(µ̄t ;�̄t), then the steps of a simple implementation of the
GPF are as follows:
1. Draw particles according to x(m)

t�1
� N(µt�1;�t�1).

2. Draw particles according to x(m)t � p(xt jx
(m)
t�1

).

3. Compute the weights of the particles by

w�(m)
t = p(yt jx

(m)
t ):

4. Normalize the weights by

w(m)
t =

w�(m)
t

∑M
j=1 w�( j)

t

:

5. Estimate µt and�t by

µt =
M

∑
m=1

w(m)
t x

(m)
t

�t =
M

∑
m=1

w(m)
t

�
x
(m)
t �µt

��
x
(m)
t �µt

�
>

which are the parameters of the Gaussian density that ap-
proximates p(xt jy1:t).
A distinctive feature of GPFs is that they do not require

resampling, which is important in hardware implementation
because this operation complicates hardware architectures.
The resampling in GPFs is replaced by sampling from a
Gaussian, which as a procedure is much simpler (in the out-
lined scheme, this is the second step). In a companion pa-
per, [52], the approximating densities are modeled as mix-
ture Gaussians, which provide more flexibility in capturing
the shapes of the predictive and filtering densities but require
more intense computations. In general, as noted in [51], the
approximating densities can be any appropriate parametric
densities.

Recall that resampling entails a problem that is referred
to as particle attrition. It is particularly emphasized when
the used models have fixed parameters. As the recursions
progress with time, unless special steps are undertaken, the
size of the particle set of the fixed parameters decreases and
very quickly is depleted. This deficiency of the PFs has been
recognized and addressed in the past, for example in [35] and
[77], and more recently in [54]. In these approaches, the idea
is to introduce artificial evolution of the particles and thereby
treat them in more or less the same way as the dynamic states
of the model. GPFs do not share the problem of standard PFs
regarding constant parameters. This is because in the first
step when the particles are drawn from the normal (or any
other approximating) distribution, there is a natural evolution
of the particles that are drawn from the space of the constant
parameters.
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4.2 Cost-reference particle filters

Another interesting development in the theory of particle
filtering represents the introduction of the class of cost-
reference particle filters (CRPFs) [60]. The idea behind them
is the desire to have particle filters that can process data mod-
eled by the standard state-space dynamic models but with-
out the usual probabilistic assumptions about the noise in the
state and observation equations. In other words, we want to
use the same mechanism of exploring the space of unknowns
by particles with assigned weights but without knowing the
noise distributions of the model.

Key concepts of the new filters are the cost and risk func-
tions. The cost function has a recursive structure and is de-
fined by

C(x0:t jy1:t ;λ ) = λ C(x0:t�1jy1:t�1;λ )+4C(xt jyt); (17)

where 0 < λ < 1 is a forgetting factor,4C : RLx �RLy ! R

is the incremental cost function with Lx and Ly being the
dimensions of xt and yt , and C(x0:t jy1:t ;λ ) is defined by

C : R(t+1)Lx �RtLy �R! R:

The forgetting factor λ avoids attributing an excessive weight
to old observations when a long series of data are collected,
hence allowing for potential adaptivity. Note that we could
have adopted a different recursion from the one in (17).

When C(x0:t jy1:t ;λ ) has a large value, the corresponding
state sequence x0:t is not a good estimate given the sequence
of observations y1:t , and if C(x0:t jy1:t ;λ ) has small value,
the associated trajectory x0:t is close to the true state signal.

The other new concept is the one-step risk function,
which is defined by

R : R
Lx � R

Ly ! R

xt�1 ; yt ; R(xt�1jyt):
(18)

The risk measures the quality of the state estimate xt�1 given
the new observation yt . We can also view the risk function
as a prediction of the cost increment, 4C(xt jyt), before xt
is actually propagated. Thus, one choice of the risk function
can be

R(xt�1jyt) =4C
�

fx(xt�1)jyt
�
: (19)

The operation of the new filter proceeds sequentially in a
similar way as the conventional particle filter. Given a set of
M particle and costs (instead of weights) up to time t�1,

Ξt�1 =
n
x
(m)
t�1

;C(m)
t�1

oM

m=1

where C(m)
t�1

= C(x(m)
0:t�1

jy1:t�1;λ ), with the new observation
yt , the set of state trajectories is extended to Ξt+1. The state-
space model is the same as given by (11) and there are no
assumptions about the forms of the noise probability distri-
butions. We only add the following mild requirements:

1. The initial state is known to lie in a bounded interval
Ix0

� R
Lx .

2. The system and observation noise processes are both
zero-mean.

The resulting CRPF is implemented as follows:

1. Time t = 0: initialization.
Generate M particles from the uniform distribution in the
interval Ix0

,

x
(m)
0

�U(Ix0
);

and assign them zero costs. The initial weighted particle
set is

Ξ0 = fx(m)
0

;C(m)
0

= 0gM
m=1

is obtained.
2. Time t: selection of the most promising trajectories.

The goal of the selection step is the same as that of re-
sampling. We want to replicate those particles with a low
cost and remove the ones with high-cost. With these fil-
ters, unlike in conventional particle filters, after resam-
pling the particles preserve their costs.
For m = 1;2; :::;M, compute the one-step risk of particle
m and let

R(m)
t = λ C(m)

t +R(x(m)
t�1
jyt)

which yields a predictive cost of the trajectory x0:t�1 ac-
cording to the new observation, yt . We now define a
probability mass function (pmf) of the form

π̂(m)
t+1

∝ ϕ (R(m)
t ) (20)

where ϕ : R ! [0;+∞) is a monotonically decreasing
function. We use this function to obtain an intermediate

weighted particle set Ξ̂t =
n
x̂
(m)
t�1

; Ĉ(m)
t�1

oM

m=1
.

3. Time t + 1: random particle propagation. We exploit
an arbitrary conditional probability distribution function
πt(xt jxt�1) (which must satisfy some very mild condi-
tion), to draw new particles x(m)t � πt(xt jx̂

(m)
t�1

) and up-
date the associated costs,

C(m)
t = λ Ĉ(m)

t�1
+4C(m)

t

where
4C(m)

t =4C(x(m)t jyt)

for m= 1;2; :::;M. The obtained set of weighted particles

is Ξt =
n
x
(m)
t ;C(m)

t

oM

m=1
.

4. Time t +1: estimation of the state. To obtain estimates
of the states, we assign probability masses to the particles
of Ξt by using their costs, for example by

π(m)
t ∝ ϕ (C(m)

t ) (21)

where ϕ is a monotonically decreasing function. Once
the pmf is defined, the estimation of the states is straight-
forward.

The details of the filter which includes discussion on
choosing the cost and risk functions as well as the ϕ func-
tion can be found in [60]. In addition, that paper provides
convergence results of the proposed filter. Simulation results
show that the CRPFs are very promising and that they yield
much improved performance over conventional particle fil-
ters in cases where the noise distributions are unknown.
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4.3 Implementation of particle filters

It is well known that the particle filters are computation-
ally intensive but that they are also parallelizable. The latter
opens up an interesting area of research related to the hard-
ware design of particle filters. Some progress in the develop-
ing of architectures for particle filters has already been made
and the research related to these activities has produced some
very interesting results.

The main design objective is the achievement of high
speed, that is, the minimization of the input sampling period
for a given number of particles. The sampling period of the
particle filter is the time interval that is necessary to process
one input observation. A high speed implementation requires
that all the operations are spatially mapped, i.e., each oper-
ation has its own hardware block and all the blocks perform
their operations concurrently. Moreover, the particle filter
operations have to be overlapped in time and each block has
to be pipelined [41]. The only platforms that allow for ap-
plication of temporal and spatial concurrency are ASIC [43]
and FPGA.

The minimum sampling period that can be obtained af-
ter implementing a standard particle filter is (2M + L) � Tclk
where L is the constant hardware latency defined by the depth
of pipelining of particle filtering operations, Tclk is the clock
period and M is the number of particles [11, 12, 14, 42]. The
sampling period can be decreased by introducing parallelism
[12, 13] so that there are K processing elements which per-
form the same particle filtering operations on the particles
that are distributed to them. The minimum sampling period
is then

Tmin = (2M=K+L+Lc) �Tclk (22)

where Lc is the latency due to communication between par-
allel elements. We point out that increases in speed can be
accomplished not only by using better technology but also
by combining the outputs of particle filters that share the data
processing load.

A prototype of a particle filter has recently been built us-
ing an FPGA platform. The filter achieves processing speeds
that are 32 times higher than the speed of a state-of-the art
DSP processor which implements the same particle filter.

4.4 Other developments

Much of the new developments is related to novel applica-
tions of particle filters in a wide range of areas. One of them
is wireless communications where particle filters are used for
blind equalization in time-invariant channels, [56, 61], time-
varying channels [32], additive Gaussian and non-Gaussian
channels [65], and in OFDM systems [80]. Blind detection
over flat fading channels [18, 44, 50, 65], multiuser detec-
tion [45], space-time coding [81], syncronization [31], phase
tracking [2], and tracking the statistical variations of channel
matrices in MIMO wireless channels [40] is also addressed.
More on the application of particle filtering in wireless com-
munications can be found in [25].

An area where particle filters are frequently applied is
target tracking. In [34], a particle filter is applied to tracking
a target that is occasionally hidden in blind Doppler regions.
Real-time speaker tracking by applying sensor fusion is de-
scribed in [20], and similarly, tracking of acoustics source in
a reverberant environment in [76]. Additional work on dis-
tributed signal processing by particle filtering in sensor net-
works is reported in [9, 21, 71].

Many problems in computer vision such as probabilistic
tracking of objects in image sequences are addressed by par-
ticle filters. For example, in [64] visual tracking by fusion of
the three cues with particle filtering is achieved, and results
on real teleconference and surveillance data are provided. In
[82], a particle filter is proposed for face recognition from a
probe video and compared with a gallery of still templates,
and in [16], target tracking in cluttered image sequences of
infrared airborne radar is performed.

We conclude this list with a few more applications of par-
ticle filtering. In [28], a new particle filter is proposed for on-
line inference of hidden-Markov models, and in [4] a particle
filter is developed for jump Markov processes, which have a
hierarchical structure and consist of a mixture of heteroge-
neous models. A survey of applications of particle filtering
to change detection, system identification and control is pro-
vided in [7]. Recent applications of particle filters in mobile
robots are presented in [22, 53].

5. CONCLUSIONS

Monte Carlo methods will find increasing use in many sig-
nal processing problems. With the continued advances in the
theory of these methods, the proliferation of computer tech-
nology, and the development of special purpose hardware,
the role of Monte Carlo methods in resolving highly com-
plex problems in science and engineering will only grow.
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