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ABSTRACT

Methods based on distinguished regions (transformation co-
variant detectable patches) have achieved considerable suc-
cess in a range of object recognition, retrieval and matching
problems, in still images and videos. We review the state-of-
the-art, describe relationship to other recognition methods,
analyse their strengths and weaknesses, and present exam-
ples of successful applications.

1. INTRODUCTION

Recognition of general three-dimensional objects from 2D
images and videos is a challenging task. The common for-
mulation of the problem is essentially: given some knowl-
edge of how certain objects may appear, plus an image of a
scene possibly containing those objects, find which objects
are present in the scene and where. Recognition is accom-
plished by matching features of an image and model of an
object. The two most important issues that a method must
address are the definition of a feature, and how the matching
is found.

What is the goal in designing an object recognition sys-
tem? Achieving generality, i.e. the ability to recognise any
object hand-crafted adaptation to a specific task, robustness,
the ability to recognise the objects in arbitrary conditions,
and easy learning, i.e. avoiding special or demanding proce-
dures to obtain the database of models. Obviously these
requirements are generally impossible to achieve, as it is
for example impossible to recognise objects in images taken
in complete darkness. The challenge is then to develop a
method with minimal constraints.

Object recognition methods can be classified according
to a number of characteristics. We focus on model acqui-
sition (learning) and invariance to image formation condi-
tions. Historically, two main trends can be identified. In
the so called geometry- or model-based object recognition,
the knowledge of an object appearance is provided by the
user as an explicit CAD-like model. Typically, such a model
describes only the 3D shape, omitting other properties such
as colour and texture. On the other end of the spectrum
are the appearance-based methods, where no explicit user-
provided model is required. The object representations are
usually acquired through an automatic learning phase (but
not necessarily), and the model typically relies on surface re-
flectance (albedo) properties. Recently, methods which put
local image patches into correspondence emerged. Models
are learned automatically, objects are represented by ap-
pearance of small local elements. Global arrangement of the
representation is constrained by weak or strong geometric
models.

The rest of the paper is structured as follows. In Sec-
tion 2, an overview of classes of object recognition methods
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is given. Survey on methods which are based on match-
ing of local features is presented in Section 3, and Section 4
describes some of their successful applications. Section 5
concludes the paper.

2. CLASSES OF OBJECT RECOGNITION
METHODS

2.1 Appearance Based Methods

The central idea behind appearance-based methods is the
following. Having seen all possible appearances of an object,
can recognition be achieved by just efficiently remembering
all of them? Could recognition be thus implemented as an
efficient visual (pictorial) memory? The answer obviously
depends on what is meant by ”all appearances”. The ap-
proach has been successfully demonstrated for scenes with
unoccluded objects on black background [34]. But remem-
bering all possible object appearances in the case of arbitrary
background, occlusion and illumination, is currently compu-
tationally prohibitive.

Appearance based methods [6, 70, 20, 3, 40, 33, 68, 21,
30, 34] typically include two phases. In the first phase, a
model is constructed from a set of reference images. The
set includes the appearance of the object under different ori-
entations, different illuminants and potentially multiple in-
stances of a class of objects, for example faces. The images
are highly correlated and can be efficiently compressed using
e.g. Karhunen-Loeve transformation (also known as Princi-
pal Component Analysis - PCA).

In the second phase, ”recall”, parts of the input image
(subimages of the same size as the training images) are ex-
tracted, possibly by segmentation (by texture, colour, mo-
tion) or by exhaustive enumeration of image windows over
whole image. The recognition system then compares an ex-
tracted part of the input image with the reference images
(e.g. by projecting the part to the Karhunen-Loeve space).

A major limitation of the appearance-based approaches
is that they require isolation of the complete object of inter-
est from the background. They are thus sensitive to occlu-
sion and require good segmentation. A number of attempts
have been made to address recognition with occluded or par-
tial data [32, 30, 65, 5, 21, 4, 64, 20, 15, 19].

The family of appearance-based object recognition meth-
ods includes global histogram matching methods. In [66, 67],
Swain and Ballard proposed to represent an object by a
colour histogram. Objects are identified by matching his-
tograms of image regions to histograms of a model image.
While the technique is robust to object orientation, scaling,
and occlusion, it is very sensitive to lighting conditions, and
it is not suitable for recognition of objects that cannot be
identified by colour alone. The approach has been later mod-
ified by Healey and Slater [14] and Funt and Finlayson [12]
to exploit illumination invariants. Recently, the concept of
histogram matching was generalised by Schiele [52, 51, 50],
where, instead of pixel colours, responses of various filters
are used to form the histograms (called then receptive field
histograms).
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To summarise, appearance based approaches are attrac-
tive since they do not require image features or geometric
primitives to be detected and matched. But their limitations,
i.e. the necessity of dense sampling of training views and the
low robustness to occlusion and cluttered background, make
them suitable mainly for certain applications with limited or
controlled variations in the image formation conditions, e.g.
for industrial inspection.

2.2 Geometry-Based Methods

In geometry- (or shape-, or model-) based methods, the in-
formation about the objects is represented explicitly. The
recognition can than be interpreted as deciding whether (a
part of) a given image can be a projection of the known
(usually 3D) model [41] of an object.

Generally, two representations are needed: one to repre-
sent object model, and another to represent the image con-
tent. To facilitate finding a match between model and image,
the two representations should be closely related. In the ideal
case there will be a simple relation between primitives used
to describe the model and those used to describe the image.
Would the object be, for example, described by a wireframe
model, the image might be best described in terms of linear
intensity edges. Each edge can be then matched directly to
one of the model wires. However, the model and image rep-
resentations often have distinctly different ”meanings”. The
model may describe the 3D shape of an object while the im-
age edges correspond only to visible manifestations of that
shape mixed together with ”false” edges (discontinuities in
surface albedo) and illumination effects (shadows).

To achieve pose and illumination invariance, it is prefer-
able to employ model primitives that are at least somewhat
invariant with respect to changes in these conditions. Con-
siderable effort has been directed to identify primitives that
are invariant with respect to viewpoint change [31, 76].

The main disadvantages of geometry-based methods are:
the dependency on reliable extraction of geometric primi-
tives (lines, circles, etc.), the ambiguity in interpretation
of the detected primitives (presence of primitives that are
not modelled), the restricted modelling capabilities only to
a class of objects which are composed of few easily detectable
elements, and the need to create the models manually.

2.3 Recognition as a Correspondence of Local Fea-
tures

Neither geometry-based nor appearance-based methods dis-
cussed previously do well as defined by the requirements
stated in the beginning of the paper, i.e. the generality, ro-
bustness, and easy learning. Geometry-based approaches re-
quire the user to specify the object models, and can usu-
ally handle only objects consisting of simple geometric prim-
itives. They are not general, nor do they support easy learn-
ing. Appearance-based methods demanded exhaustive set of
learning images, taken from densely distributed views and il-
luminations. Such set is only available when the object can
be observed in a controlled environment, e.g. placed on a
turntable. The methods are also sensitive to occlusion of the
objects, and to the unknown background, thus they are not
robust.

As an attempt to address the above mentioned issues,
methods based on matching local features have been pro-
posed. Objects are represented by a set of local features,
which are automatically computed from the training images.
The learned features are organised into a database. When
recognising a query image, local features are extracted as in
the training images. Similar features are then retrieved from
the database and the presence of objects is assessed in the
terms of the number of local correspondences. Since it is not
required that all local features match, the approaches are

robust to occlusion and cluttered background.
To recognise objects from different views, it is necessary

to handle all variations in object appearance. The varia-
tions might be complex in general, but at the scale of the
local features they can be modelled by simple, e.g. affine,
transformations. Thus, by allowing simple transformations
at local scale, a significant viewpoint invariance is achieved
even for objects with complicated shapes. As a result, it is
possible to obtain models of objects from only a few views,
taken e.g. 90 degrees apart.

The main advantages of the approaches based on match-
ing local features are summarised below.

• Learning, i.e. the construction of internal models of
known objects, is done automatically from images depict-
ing the objects. No user intervention is required except
for providing the training images.

• The local representation is based on appearance. There
is no need to extract geometric primitives (e.g. lines),
which are generally hard to detect reliably.

• Segmentation of objects from background is not required
prior recognition, and yet objects are recognised on an
unknown background.

• Objects of interest are recognised even if partially oc-
cluded by other unknown objects in the scene.

• Complex variations in object appearance caused by vary-
ing viewpoint and illumination conditions are approxi-
mated by simple transformations at a local scale.

• Measurements on both database and query images are
obtained and represented in an identical way.

Putting local features into correspondence is an approach
that is robust to object occlusion and cluttered background
in principle. When a part of an object is occluded by other
objects in the scene, only features of that part are missed. As
long as there are enough features detected in the unoccluded
part, the object can be recognised. The problem of cluttered
background is solved in a final step of the recognition process,
when a hypothesised match is verified and confirmed, and
false correspondences are rejected.

Several approaches based on local features have been pro-
posed. Generally, they follow a certain common structure,
which is summarised below.
Detectors. First, image elements of ’interest’ are detected.
The elements will serve as anchor locations in the images
– descriptors of local appearance will be computed at these
locations. Thus, an image element is of interest if it depicts
a part of an object, which can be repeatedly detected and
localised in images taken over large range of conditions. The
challenge is to find such a definition of ”interest”, that would
allow fast, reliable and precisely localised detection of such
elements. The brute force alternative to the detectors is
to generate local descriptors at every point. This course is
obviously infeasible due to its computational complexity.
Descriptors. Once the elements of interest are found, the
local image appearance in their neighbourhood has to be
encoded in a way that would allow for searching of similar
elements.

When designing a descriptor (also called a feature vec-
tor), several aspects have to be taken into account. First,
the descriptors should be discriminative enough to distin-
guish between features of the objects stored in the database.
Would we for example want to distinguish between two or
three objects, each described by some ten odd features, the
descriptions of local appearance can be as simple as e.g.
four-bin colour histograms. On the other hand, handling
thousands of database objects requires the ability to distin-
guish between a vast number of descriptors, demanding thus
highly discriminative representation. This problem can be
partially alleviated by using grouping, i.e. simultaneous con-
sistent matching of several detected elements.
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Another aspect in designing a descriptor is that it has
to be invariant, or at least in some degree robust, to varia-
tions in an object’s appearance that are not reflected by the
detector. If, for example, the detector detects circular or el-
liptical regions without assigning an orientation to them, the
descriptor must be made invariant to the orientation (rota-
tional invariants). Or if the detector is imprecise in locating
the elements of interest, e.g. having few pixel tolerance, the
descriptor must be insensitive to these small misalignments.
Such a descriptor might be based e.g. on colour moments (in-
tegral statistics over whole region), or on local histograms.

It follows that the major factors that affect the discrim-
inative potential, and thus the ability to handle large object
databases, of a method are the repeatability and the locali-
sation precision of the detector.
Indexing. During learning of object models, descriptors of
local appearance are stored into a database. In the recog-
nition phase, descriptors are computed on the query image,
and the database is looked up for similar descriptors (poten-
tial matches). The database should be organised (indexed)
in a way that allows an efficient retrieval of similar descrip-
tors. The character of suitable indexing structure depends
generally on the properties of the descriptors (e.g. their di-
mensionality) and on the distance measure used to determine
which are the similar ones (e.g. euclidean distance). Gen-
erally, for optimal performance of the index (fast retrieval
times), such combination of descriptor and distance measure
should be sought, that minimises the ratio of distances to
correct and to false matches.

The choice of indexing scheme has major effect on the
speed of the recognition process, especially on how the speed
scales to large object databases. Commonly, though, the
database searches are done simply by sequential scan, i.e.
without using any indexing structure.
Matching. When recognising objects in an unknown query
image, local features are computed in the same form as for
the database images. None, one, or possibly more tentative
correspondences are then established for every feature de-
tected in the query image. Searching the database, euclidean
or mahalanobis distance is typically evaluated between the
query feature and the features stored in the database. The
closest match, if close enough, is retrieved. These tenta-
tive correspondences are based purely on the similarity of
the descriptors. A database object which exhibit high (non-
random) number of established correspondences is consid-
ered as a candidate match.
Verification. The similarity of descriptors, on its own, is
not a measure reliable enough to guarantee that an estab-
lished correspondence is correct. As a final step of the recog-
nition process, a verification of presence of the model in the
query image is performed. A global transformation connect-
ing the images is estimated in a robust way (e.g. by using
RANSAC algorithm). Typically, the global transformation
has the form of epipolar geometry constraint for general (but
rigid) 3D objects, or of homography for planar objects. More
complex transformations can be derived for non-rigid or ar-
ticulated (piecewise rigid) objects.

As mentioned before, if a detector cannot recover certain
parameters of the image transformations, descriptor must be
made invariant to them. It is preferable, though, to have
a covariant detector rather than an invariant descriptor, as
that allows for more powerful global consistency verification.
If, for example, the detector does not provide the orienta-
tions of the image elements, rotational invariants have to be
employed in the descriptor. In such a case, it is impossi-
ble to verify that all of the matched elements agree in their
orientation.

Finally, tentative correspondences which are not consis-
tent with the estimated global transformation are rejected,
and only remaining correspondences are used to estimate the

final score of the match.
In the following, main contributions to the field of ob-

ject recognition based on local correspondences are reviewed.
The approaches follow the aforementioned structure, but dif-
fer in individual steps; in the way how are the local features
obtained (detectors), and what are the features themselves
(descriptors).

3. RECOGNITION AS A CORRESPONDENCE
OF LOCAL FEATURES - A SURVEY

3.1 The Approach of David Lowe

David Lowe has developed an object recognition system
[2, 23, 8, 7, 24, 22], with emphasis on efficiency, achieving
real-time recognition times. Anchor points of interest are
detected with invariance to scale, rotation and translation.
Since local patches undergo more complicated transforma-
tions then similarities, a local-histogram based descriptor is
proposed, which is robust to imprecisions in alignment of the
patches.
Detector. The detection of regions of interest proceeds as
follows:

1. Detection of scale-space peaks. Circular regions with
maximal response of the difference-of-gaussians (DoG)
filter, are detected at all scales and image locations. Ef-
ficient implementation exploits the scale-space pyramid.
The initial image is repeatedly convolved with a Gaus-
sian filter to produce a set of scale-space images. Adja-
cent scale-space images are then subtracted to produce
a set of DoG images. In these images, local minima and
maxima (i.e. extrema of the DoG filter response) are de-
tected, both in spatial and scale domains. The result of
the first phase is thus a set of triplets x, y and σ, image
locations and a characteristic scales.

2. The location of the detected points is refined. The DoG
responses are locally fitted with 3D quadratic function
and the location and characteristic scale of the circular
regions are determined with subpixel accuracy. The re-
finement is necessary, as, at higher levels of the pyramid,
a displacement by a single pixel might result in a large
shift in the image domain. Unstable regions are then
rejected, the stability is given by the magnitude of the
DoG response. Regions with the response lower than a
predefined threshold are removed. Further regions are
discarded which were found along linear edges, which,
although having high DoG response, have unstable local-
isation in one direction.

3. One or more orientations are assigned to each region.
Local histograms of gradient orientations are formed and
peaks in the histogram determine the characteristic ori-
entations.

The SIFT Descriptor. Local image gradients are mea-
sured at the region’s characteristic scale, weighted by the
distance from the region centre and combined into a set of
orientation histograms. Using the histograms, small mis-
alignments in the localisation does not affect the final de-
scription. The construction of the descriptors allows for ap-
proximately 20◦ 3D rotations before the similarity model
fails. At the end, every detected region is represented by
a 128-dimensional vector.
Indexing. To support fast retrieval of database vectors, a
modification of the kD tree algorithm, called BBF (best bin
first), is adopted. The algorithm is approximate in the sense
that it returns the closest neighbour with high probability,
or else another point that is very close in distance to the
closest neighbour. The BBF algorithm modifies the kD tree
algorithm to search bins in feature space in the order of their
closest distance from the query location, instead of the order
given by the tree hierarchy.
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Verification. The Hough transform is used to identify
clusters of tentative correspondences with a consistent ge-
ometric transformation. Since the actual transformation
is approximated by a similarity, the Hough accumulator is
4-dimensionsional and is partitioned to rather broad bins.
Only clusters with at least 3 entries in a bin, are considered
further. Each such cluster is then subject to a geometric ver-
ification procedure in which an iterative least-squares fitting
is used to find the best affine projection relating the query
and database images.

3.2 The Approach of Mikolajczyk & Schmid

The approach by Schmid et al. is described in [44, 28, 56, 54,
53, 55, 27, 10]. Based on an affine generalisation of Harris
corner detector, anchor points are detected and described by
Gaussian derivatives of image intensities in shape-adapted
elliptical neighbourhoods.
Detector. In their work, Mikolajczyk and Schmid imple-
ment affine-adapted Harris point detector. Since the three-
parametric affine Gaussian scale space is too complex to
be practically useful, they propose a solution which itera-
tively search for affine shape adaptation in neighbourhoods
of points detected in uniform scale space. For initialisa-
tion, approximate locations and scales of interest points are
extracted by standard multi-scale Harris detector. These
points are not affine invariant because of the uniform Gaus-
sian kernel used. Given the initial approximate solution,
their algorithm iteratively modifies the shape, the scale and
the spatial location of neighbourhood of each point, and con-
verges to affine-invariant interest points. For more details see
[28].
Descriptors and Matching. The descriptors are com-
posed from Gaussian derivatives computed over the shape-
normalised regions. Invariance to rotation is obtained by
”steering” the derivatives in the direction of the gradient.
Using derivatives up to 4th order, the descriptors are 12-
dimensional. The similarity of descriptors is in first approx-
imation measured by the Mahalanobis distance. Promis-
ing close matches are then confirmed or rejected by cross-
correlation measure computed over normalised neighbour-
hood windows.
Verification. Once the point-to-point correspondences are
obtained, a robust estimation of the geometric transforma-
tion between the two images is computed using RANSAC
algorithm. The transformation used is either a homography
or a fundamental matrix.

Recently, Dorko and Schmid [10] extended the approach
towards object categorisation. Local image patches are de-
tected and described by the same approach as described
above. Patches from several examples of objects from a given
category (e.g. cars) are collected together, and a classifier is
trained to distinguish them from patches of different cate-
gories and from background patches.

3.3 The Approach of Tuytelaars, Ferrari & van Gool

Luc van Gool and his collaborators developed an approach
based on matching of local image features [73, 75, 11, 72, 71,
74, 69]. They start with detection of elliptical or parallelo-
gram image regions. The regions are described by a vector
of photometricaly invariant generalised colour moments, and
matching is typically verified by the epipolar geometry con-
straint.
Detector. Two methods for extraction of affinely invariant
regions are proposed, yielding geometry- and intensity-based
regions. The regions are affine covariant, they adapt their
shape to the underlying intensity profile, in order to keep on
representing the same physical part of an object. Apart from
the geometric invariance, photometric invariance allows for
independent scaling and offsets for each of the three colour

channels. The region extraction always starts by detecting
stable anchor points. The anchor points are either Harris
points [13], or local extrema of image intensity. Although
the detection of Harris points is not really affine invariant, as
the support set over which is the response computed is circu-
lar, the points are still fairly stable under viewpoint changes,
and could be precisely localised (even to subpixel accuracy).
Intensity extrema, on the other hand, are invariant to any
continuous geometric transformation and to any monotonic
transformation of the intensity, but are not localised as ac-
curately. On colour images, the detection is performed three
times, separately on each of the colour bands.
Descriptors and Matching. In the case of geometry-
based regions, each of the regions is described by a vector of
18 generalised colour moments [29], invariant to photometric
transformations. For the intensity-based regions, 9 rotation-
invariant generalised colour moments are used. The simi-
larity between the descriptors is given by the Mahalanobis
distance, correspondences between two images are formed
from regions with the distance mutually smallest. Once cor-
responding regions have been found, the cross-correlation be-
tween them is computed as a final check before accepting the
match. In the case of the intensity-based regions, where the
rotation is unknown, the crosscorrelation is maximised over
all rotations. Good matches are further fine-tuned by non-
linear optimisation: the crosscorrelation is maximised over
small deviations of the transformation parameters.
Verification. The set of tentative correspondences is
pruned by both geometric and photometric constraints. The
geometric constraint basically rejects correspondences con-
tradicting the epipolar geometry. Photometric constraint
assumes that there is always a group of corresponding re-
gions that undergo the same transformation of intensities.
Correspondences that have singular photometric transforma-
tion are rejected. Recently, a growing flexible homography
approach was presented, which allows for accurate model
alignment even for nonrigid objects. The size of the aligned
area is then used as a measure of the match quality.

3.4 The LAF Approach of Matas et al.

The approach of Matas et al. [25, 37, 26, 36] starts with
detection of Maximally Stable Extremal Regions. Affine co-
variant local coordinate systems (called Local Affine Frames,
LAFs) are then established, and measurements taken rela-
tive to them describe the regions.

196

Figure 1: Examples of correspondences established between
frames of a database image (left) and a query image (right).

Detector. The Maximally Stable Extremal Regions
(MSERs) were introduced in [25]. The attractive properties
of MSERs are: 1. invariance to affine transformations of im-
age coordinates, 2. invariance to monotonic transformation
of intensity, 3. computational complexity almost linear in the
number of pixels and consequently near real-time run time,
and 4. since no smoothing is involved, both very fine and
coarse image structures are detected. Starting with contours
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of the detected region, local frames (coordinate systems) are
constructed in several affine covariant ways. Affine covari-
ant properties of covariance matrix, bi-tangent lines, and line
parallelism are exploited. As demonstrated in Figure 1, local
affine frames facilitate normalisation of image patches into a
canonical frame and enable direct comparison of photomet-
ricaly normalised intensity values, eliminating the need for
invariants.
Descriptor. Three different descriptors were used. The first
is directly the intensities of the local patches [37, 26, 36].
The intensities are discretised into 15× 15× 3 rasters, yield-
ing 675-dimensional descriptors. The size is discriminative
enough to distinguish between a large amount of database
objects, yet coarse enough to be tolerant to decent misalign-
ments in the frame localisation. Second type of descriptor
employs the discrete cosine transformation, which is applied
to the discretised patches [38]. The number of low frequency
DCT coefficients that are kept in the database is used to
adapt the preference of descriptor discriminativity against
the localisation tolerance. Finally, rotational invariants were
used [25].
Verification. In the wide-baseline stereo problems, the cor-
respondences are verified by robustly selecting only these
conforming to the epipolar geometry constraint. For object
recognition it is typically sufficient to approximate the global
geometry transformation by a homography with flexible tol-
eration increasing towards the object boundaries.

3.5 The Approach of Zisserman et al.

A. Zisserman and his collaborators developed strategies for
matching of local features mainly in the context of the wide-
baseline stereo problem [43, 42, 48, 45, 46]. Recently they
presented an interesting work relating image retrieval prob-
lem and text retrieval [63, 47, 49]. They introduced an im-
age retrieval system, called VideoGoogle, which is capable of
processing and indexing full-length movies.
Detectors and Descriptors. Two types of detectors of lo-
cal image elements are employed. One is the shape-adapted
elliptical regions by Mikolajczyk and Schmid, as described in
Section 3.2, second the Maximally Stable Extremal Regions
from Section 3.4. Representation of the local appearance is
realised by the SIFT descriptors introduced by David Lowe
(see Section 3.1). Knowing that a motion video sequence
is being processed, noisy and unstable regions can be elimi-
nated. The regions detected in each frame of the video are
tracked using a simple constant velocity dynamic model and
correlation. Any region which does not survive for more
than three frames is rejected. The estimate of the descriptor
for a region is then computed by averaging the descriptors
throughout the track.
Indexing and Matching. The descriptors are grouped into
clusters, based on their similarity. In analogy to stop-lists in
text retrieval, where common words, like ’the’, are ignored,
large clusters are eliminated. When a new image is observed,
each descriptor of the new image is matched only against
representants of individual clusters. Selection of the nearest
cluster immediately generates matches for all frames of the
cluster, throughout the whole movie. The exhaustive com-
parison with every descriptor of every frame is thus avoided.
The similarity measure, used for both the clustering and the
closest cluster determination, is given by the Mahalanobis
distance of the descriptors.
Verification. Video frames are first retrieved using the fre-
quency of matched descriptors, and then re-ranked based
on a measure of spatial consistency of the correspondences.
The matched regions provide affine transformation between
the query and the retrieved image, so a point to point corre-
spondence is locally available. A search area of each match is
defined by few nearest neighbours. Other regions which also
match within this area casts a vote for that frame. Matches

with no support are rejected. The final rank of the frame is
determined by the total number of votes.

3.6 Other Related Work

Scale Saliency by Kadir & Brady

Kadir and Brandy presented an algorithm [17] that define
image regions salient if they are unpredictable in some spe-
cific feature-space, i.e. if exhibiting high entropy with re-
spect to a chosen representation of local appearance. The
approach offers a more general model of feature saliency com-
pared with conventional techniques, which define saliency
only with respect to a particular set of properties, chosen in
advance.

In its basic form, the algorithm is invariant only to simi-
larity transformations (thence the name ’scale’ saliency; only
the scale of circular regions is estimated on top of their lo-
cations). Recently, an affine extension to the scale selection
was presented [18], capable of detecting elliptical regions.
The modified saliency measure is then a function of three
parameters representing the affine deformation, instead of
the single one for the scale.

Local PCA, approaches of Jugessur and Ohba

As discussed in Section 2.1, global PCA (principal compo-
nent analysis) based methods are sensitive to variations in
the background behind objects of interest, changes in the ori-
entation of the objects, and to occlusion. Ohba and Ikeuchi
[39] and Jugessur and Dudek [16] propose an appearance-
based object recognition method robust to variations in the
background and occlusion of a substantial fraction of the
image.

In order to apply the eigenspace analysis to recognition
of partially occluded objects, they propose to divide the ob-
ject appearance into small windows, referred to as ”eigen
windows” [39], and to apply eigenspace analysis to them.
Like in other approaches exploiting local appearance, even
if some of the windows are occluded, the remaining are still
effective and can recover the object identity and pose.

In addition to robustness to occlusions, Jugessur and
Dudek [16] also address the problem of rotation invariance.
The proposed solution is to compute the PCA not on the
intensity patches, but rather in frequency domain of the win-
dows represented in polar coordinates.

The Approach of Selinger & Nelson

The object recognition system developed by Nelson and
Selinger at the University of Rochester exploits a four-level
hierarchy of grouping processes [35, 59, 61, 58, 57, 60]. The
system architecture is similar to other local feature-based ap-
proaches though a different terminology is used. Inspired by
the Gestalt laws and perceptual grouping principles, a four-
level grouping hierarchy is built, where higher levels contains
groups of elements from lower levels.

The hierarchy is constructed as follows. At the fourth
highest level, a 3D object is represented as a topologically
structured set of flexible 2D views. The geometric relation
between the views is stored here. This level is used for geo-
metric reasoning, but not for recognition. Recognition takes
place at the third level, the level of the component views. In
these views the visual appearance of an object, derived from
a training image, is represented as a loosely structured com-
bination of a number of local context regions. Local context
regions (local features) are represented at the second level.
The regions can be thought of as local image patches that
surround first level features. At the first level are features
(detected image elements) that are the result of grouping
processes run on the image, typically representing connected
contour fragments, or locally homogeneous regions. Only
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Figure 2: Examples of corresponding query (left columns)
and database (right columns) images from the ZuBuD
dataset. The image pairs exhibit occlusion, varying illumi-
nation and viewpoint and orientation changes.

”strong” first level features are used as keys, around which
context patches (the second level) are constructed.

Efficient recognition is achieved by using a database
implemented as an associative memory of keyed context
patches. An unknown keyed context patch recalls associ-
ated hypotheses for all known views of objects that could
have produced such context patch. These hypotheses are
processed by a second associative memory, indexed by the
view parameters, which partitions the hypotheses into clus-
ters that are mutually consistent within a loose geometric
framework (these clusters are the third level groups). The
looseness is obtained by tolerating a specified deviation in
position, size, and orientation. The bounds are set to be
consistent with a given distance between training views (e.g.
approximately 20 degrees). The output of the recognition
stage is a set of third level groupings that represent hypothe-
ses of the identity and pose of objects in the scene, ranked
by the total evidence for each hypothesis.

4. APPLICATIONS

Approaches matching local features have been experimen-
tally shown to obtain state-of-the-art results. Here we
present few examples of the adressed problems. Results are
demonstrated using the approach of Matas et al. [37, 36, 38],
although comparable results have been shown by others.

Figure 3: Image retrieval on FOCUS dataset: query local-
isation results. query images, database images, and query
localisations

Object Recognition. In object recognition experiments,
Columbia Object Image Library (COIL-100) [1], or more of-
ten its subset COIL-20, has been widely used, and for com-
parison purposes has become a de facto standard benchmark

training views/object 18 8 4 2 1
total test views 5400 6400 6800 7000 7100

LAFs 99.9% 99.4% 94.7% 88% 76%
SNoW/edges [77] 94.1% 89.2% 88.3% - -
SNoW/intensity [77] 92.3% 85.1% 81.5% - -
Linear SVM [77] 91.3% 84.8% 78.5% - -
Spin-Glass MRF [9] 96.8% 88.2% 69.4% 58% 50%
Nearest Neighb. [77] 87.5% 79.5% 74.6% - -

Table 1: COIL-100: Recognition rate (rank 1), in compari-
son to appearance based methods

Figure 4: An example of matches established on a wide-
baseline stereo pair.

dataset. COIL-100 is a set of colour images of 100 different
objects, where 72 images of each object were taken at pose
intervals of 5◦. The objects are unoccluded and on unclut-
tered black background. Such a configuration is benign for
appearance-based methods. Table 1 compares recognition
rates achieved by the LAF approach with the rates of sev-
eral appearance-based object recognition methods. Results
are presented for five experimental set-ups, differing in the
number of training views per object. Decreasing the number
of training views increases demands on the method’s general-
isation ability, and on the insensivity to image deformations.
The LAF approach performs best in all experiments, regard-
less of the number of training views. For only four training
views, the recognition rate is almost 95%, demonstrating the
remarkable robustness to local affine distortions.
Image retrieval. The retrieval performance of the LAF
method was evaluated on the FOCUS dataset, containing
360 colour high-resolution images of advertisements scanned
from magazines. The task was to retrieve adverts for a given
product, given a query image of the product logo. Examples
of query logos, retrieved images, and visualised localisations
of the logos are depicted in Figure 3.

Another challenging retrieval problem involved recogni-
tion of buildings in urban scenes. Given an image of an
unknown building, taken from an unknown viewpoint, the
algorithm was to identify the building. The experiments
were conducted on a set of images of 201 different buildings.
The dataset was provided by ETH Zurich and is publicly
available [62]. The database contains five photographs of
every of the 201 buildings, and a separate set of 115 query
images is provided. Examples of corresponding query and
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database images are shown in Figure 2. The LAF method
achieved 100% recognition rate in rank 1.
Video retrieval. The problem of retrieval of video frames
from full-length movies was addressed in [63]. Local descrip-
tors were computed on key frames and stored into database.
To reduce the otherwise enormous database size, descriptors
were clustered according to their similarity. Impresive real-
time retrieval was achieved for a closed system, i.e. for the
case of query images originating from the movie itself.
Wide baseline stereo matching. For a significant variety
of scenes the epipolar geometry can be computed automati-
cally from two (or possibly more) uncalibrated images, show-
ing the scene from significantly different viewpoints. The
role of the matching in the wide-baseline stereo problem is
to provide corresponding points, i.e. the points which in
the two images represent identical element of the 3D scene.
Correspondences found in a difficult stereo pair are shown in
Figure 4.

5. CONCLUSIONS

In this paper we analysed and reviewed object recogni-
tion methods, focusing on these based on matching of lo-
cal features. We presented a literature survey, and stated
the relationship to other recognition methods. Examples
of successful applications in realistic conditions were pre-
sented, demonstrating the strengths of the local methods.
The applications included recognition of household objects
in a database of 100 objects, recognition of buildings in a
database of 200 buildings, retrieval of advertisements and
the wide-baseline stereo matching.

The challenging and interesting problem of object cate-
gorisation was not covered.
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