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ABSTRACT
We present, in this paper, several algorithms for the joint
block diagonalization (JBD) of a set of matrices. In particu-
lar, we will show and explain how the JBD can be achieved
(up to a permutation matrix) using a Jacobi-like joint diag-
onalization algorithm. Two simple techniques are proposed
to reduce the permutation indeterminacy to a ‘block permu-
tation’ indeterminacy (the latter being inherent to the JBD
problem). Finally, a comparative study of the considered
JBD methods is provided.

1. INTRODUCTION

Estimating the joint eigenstructure of several matrices is
a problem that arises in many multivariate signal process-
ing applications, e.g., joint diagonalization for source sep-
aration [3], joint eigendecomposition for parameter estima-
tion and pairing [9, 6], joint block-diagonalization (JBD) for
source localization and convolutive source separation [7, 5],
joint Schur decomposition for multidimensional harmonic
retrieval [1, 10] and blind system identification [2].

In this paper, we focus on the JBD problem. This prob-
lem has been first treated in [4] for a set of positive definite
symmetric matrices. In [7], a new JBD approach of singu-
lar (not necessarily positive) matrices has been introduced to
solve the problem of DOA (Direction Of Arrival) estimation.
Herein, we present ‘exact’ and ‘approximate’ iterative JBD
algorithms. These algorithms are Jacobi-like techniques that
minimize a squared error cost function iteratively by means
of Givens rotations. An advantage of the Jacobi methods is
their inherent parallelism, which allows efficient implemen-
tations on certain parallel architectures [11]. Another virtue
of the Jacobi methods is their favorable rounding-error prop-
erties, in the sense that small relative perturbation in the ma-
trices entries cause small relative perturbations in the entries
of their engenstructures [12]. Finally, we show how the JBD
of a set of matrices can be achieved via the joint diagonaliza-
tion algorithm in [3].

2. PROBLEM FORMULATION

Consider a set of K matrices,
�

1 ��������� � K ,
�

i 	 Cn 
 n � i �
1 ��������� K, that have the following decomposition:

�
i �� � 1 ��������� � r � ���� i1 ����� �

. . .� ����� �
ir

�� ��� � H
1
...� H
r

����
(1)

where ���� � 1 ��������� � r � is unitary and � i j � j � 1 ��������� r are r
m j � m j square matrices with m1 � ����� � mr � n.

The matrices
�

i � i � 1 ��������� K are said to be jointly block
diagonalizable under unitary transform � , i.e., � H �

i � are

block diagonal matrices for i � 1 ��������� K. � H denotes the
transpose conjugate of � .

The problem of JBD consists in estimating the matri-
ces � and � i j � i � 1 ��������� K, j � 1 ��������� r given the matrices�

i � i � 1 ��������� K. Note that the JBD decomposition is not
unique since if ��� 1 ��������� � r � � 11 ��������� � Kr � is a solution then�! i �"� i # i and �  i j � # H

i
�

i j # i is also another admissible
solution, where # i � i � 1 ��������� r are unitary matrices. In other
words, matrix � can be determined only up to a block diag-
onal unitary matrix. However, is most practical applications
this indeterminacy is inherent and does not affect the final
result of the considered problem.

In practice, the matrices
�

1 ��������� � K are given by some
sample estimated statistics that are corrupted by estimation
errors due to noise and finite sample size effects. Thus, they
are only “approximately” simultaneously block diagonaliz-
able. This suggests that a viable JBD algorithm must provide
a kind of an “average eigenstructure” when it is applied to
a set of nearly joint block diagonalizable matrices. An op-
timal solution based on a least-squares approach has been
proposed in [8] on which the Jacobi-like JBD algorithms of
next section are based.

3. JACOBI-LIKE JBD ALGORITHMS

Solving the JBD problem in the least-squares sense consists
in choosing the n � n unitary matrix � and the mi � mi matri-
ces � ki such that one minimizes the Frobenius norm of the
difference between the data matrices

�
k and the true matri-

ces given by (1), i.e.

min$
i % & ki

K

∑
k ' 1 ( � k ) r

∑
i ' 1
� i
�

ki � H
i ( 2 (2)

This least-squares fitting problem leads to (see [8] for more
details) the following criterion

max$ K

∑
k ' 1 ( bdiag *+� H �

k �-, ( 2 (3)

where bdiag * � , is a block diagonal matrix constructed from� def�.� � i j � 1 / i % j / r (
�

i j being mi � m j matrices) in the fol-
lowing way:

bdiag * � ,0� �� �
11 �

. . .� �
rr

��21
(4)

In other words, the JBD of � � 1 ��������� � K � consists in max-
imizing under unitary transform � the sum of the norms of
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their block diagonal entries. This is equivalent to minimizing
the sum of the norms of their block off-diagonal entries. It
is clear that the latter is minimum (zero) when all matrices
are exactly block diagonal. Criterion (3) is referred to as the
JBD criterion in the sequel.

To minimize the JBD criterion (3), we choose here to
compute the unitary matrix � as products of Givens rota-
tions, i.e., � � ∏

nb � of sweeps
∏

1 / p � q / n

���
qp �

where the elementary Givens rotations
���

qp � are defined as
unitary matrices where all diagonal elements are 1 except for
the two elements equal to c in rows (and columns) p and q.
Likewise, all off-diagonal elements of

� �
qp � are 0 except for

the two elements s and ) s at * p � q , and * q � p , respectively,
where s denotes the conjugate of s. The scalar numbers c and
s are given by �

c � cos * θ ,
s � sin * θ , exp * iα ,

where i �	� ) 1. In the sequel, we describe a procedure to
choose the rotation angles θ and α at a particular iteration
such that the cost function (3) is increased to its maximum.
To this end, we need to specify the orthogonal transformation�  � � H�

qp � � � �
qp � (5)

for any given matrix
� 	 Cn 
 n. First notice that these or-

thogonal transformation changes only the pth and qth rows
and pth and qth columns of

�
. Also, when p and q sweep

the same diagonal block, i.e., 1 
 p � q 
 m1, or m1 � p � q 

m1 � m2, ����� , or ∑r � 1

i ' 1 mi � p � q 
 n, then the value of the
JBD criterion (3) is unchanged. Therefore, we consider only
indices * p � q , that sweep two different diagonal blocks, e.g.,
for r � 2 we select p and q in the range 1 
 p 
 m1 � q 
 n.

The changed entries of
�  in its block-diagonal matrices

are given by:�  * p � j , � c
� * p � j , ) s

� * q � j , � j � p�  * j � p , � c
� * j � p , ) s

� * j � q , � j � p�  * p � p , � c2 � * p � p , ��� s � 2 � * q � q ,) sc
� * p � q , ) sc

� * q � p ,�  * q � j , � s
� * p � j , � c

� * q � j , � j � q�  * j � q , � s
� * j � p , � c

� * j � q , � j � q�  * q � q , � c2 � * q � q , ��� s � 2 � * p � p ,� sc
� * q � p , � sc

� * p � q , (6)

3.1 Exact JBD algorithm

The proposed method consists of maximizing iteratively the
JBD criterion (3) by successive Givens rotations, starting
from � ��� . The rotations

���
qp � are computed such that

(3) is maximum, i.e., at each iteration, the angle parameters* θ � α , are given by:* θ � α , � argmax � * θ � α ,� * θ � α , def� K

∑
k ' 1 ( bdiag * �  k , ( 2 (7)

where
�  k is defined as in (5). The exact JBD algorithm can

be summarized as follows (using informal notation)1:

�����
for k � 1 � 1 1 1 � nb. of iterations
for * p � q , 	��� �

qp � � argmaxθ % α � * θ � α ,� : � � � � qp � and
�

k : � � H�
qp � � k

� �
qp � � k � 1 ��������� K

where � denotes the set of ‘admissible’ indices, i.e.

� ��� * p � q , ��� 0 
 ip � iq � r� ip

∑
j ' 1

m j � p 
 ip � 1

∑
j ' 1

m j

and
iq

∑
j ' 1

m j � q 
 iq � 1

∑
j ' 1

m j � (8)

After some straightforward derivations, the maximiza-
tion of � * θ � α , is shown to be equivalent to the maximiza-
tion of the linear-quadratic form

max����� ' 1
*� T !  ��" T  , (9)

where � � cos * 2θ , � sin * 2θ , cos * α , � sin * 2θ , sin * α , � T (10)

and ! (resp. " ) is a 3 � 3 real-valued matrix (resp. a 3 � 1
real-valued vector) the expressions of which (omitted here
due to space limitation) are known explicit functions of the
entries of

�
1 ��������� � K . Using a Lagrange multiplier, the

maximization of (9) leads to:

2 * ! � λ � ,# ��" � � (11)

and hence  � ) 1
2
* ! � λ � , � 1 " (12)

where λ is a real scalar chosen in such a way that

(  ( 2 � 1 $&% 1
4

3

∑
i ' 1

� ' T
i "(� 2* λi � λ , 2 � 1 (13)

� ' i � 1 / i / 3 and � λi � 1 / i / 3 being the eigenvectors and eigen-
values of ! . Or � ) 1

2
* ! ) λi � , # "!� ci ' i � i � 1 � 2 � 3 (14)

which corresponds to the case where λ coincides with the
opposite of an eigenvalue of ! , i.e., ) λi � i � 1 � 2 � 3. # de-
notes the pseudo-inverse operator and ci is a real constant
chosen such that (  ( � 1 and (9) is maximum2. It is given
by ci � sign * ' T

i " , * 1 ) ( * ! ) λi � , # " ( 2 ) 4 , 1
2 .

1Note that the criterion is calculated with the current values of the matri-
ces * 1 +-,-,-,.+ * K which are updated at each iteration using the above orthog-
onal transformation. For notational simplicity, we keep using the generic
notation * 1 +-,-,-,.+ * K to denote the updated matrices.

2This solution exists only if /1032�4 λi 5#6 # 7 /98 2 : 1. Note that, when
it exists, both ci and 4 ci satisfy /<;=/?> 1. We then choose the one that
maximizes (9) which is given by sign 0 ci 6 > sign 0A@ T

i
7 6 .
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As we can see from (13), finding λ involves a 6th order
polynomial rooting. In general, equation (13) has multiple
real-valued roots λ leading to multiple solutions for vector . Among the set of all possible solutions, we select the
one associated with the vector  that maximizes the value of� * θ � α , , i.e., the vector  that maximizes (9).

Note that in the real data case, the matrix ! is 2 � 2 and
vector " is 2 � 1. In this case, (13) becomes a 4-th order
polynomial equation.

Once  � � v * 1 , � v * 2 , � v * 3 , � T is obtained, the Givens rota-
tion parameters c and s are computed according to (10) as

c � �
v * 1 , � 1

2

s � v * 2 , � iv * 3 ,
2c

(15)

Next, by means of a slight approximation of the JBD
criterion, we present an alternative solution to (9) where no
polynomial rooting is required.

3.2 Approximate JBD algorithm

To simplify the JBD algorithm, we choose here to approxi-
mate � �  * p � p , � 2 (up to a scalar constant independent from
the rotation parameters * θ � α , ) by� �  * p � p , � 2 � � � � � �

qp � � * p � p , � 2 ��� � � H�
qp � � � * p � p , � 2 1

This can be shown to be a first order approximation for� �  * p � p , � 2 in the vicinity of the optimal point. Effectively,
by writing

� �
qp � �	� � εqp (with ( εqp (�� 1 in the neigh-

borhood of the convergence point), we obtain as a first order
approximation� �  * p � p , � 2 � � � � � εH

qp
� � � εqp � * p � p , � 2 (16)� � � * p � p , � 2 � 2ℜe � � * p � p , � εH

qp
� � * p � p ,� � * p � p , � � εqp � * p � p , � (17)� � � � ���

qp � � * p � p , � 2 � � � � H�
qp � � � * p � p , � 2 ) � � * p � p , � 2 1(18)

since at the first order, � � � � �
qp � � * p � p , � 2 and� � � H�

qp � � � * p � p , � 2 are approximated respectively by

� � * p � p , � 2 � 2ℜe � � * p � p , � � εqp � * p � p , �
and � � * p � p , � 2 � 2ℜe � � * p � p , � εH

qp
� � * p � p , �

With this approximation, the JBD criterion becomes of the
form � * θ � α , � ˜" T  (19)

and its maximization leads to the explicit expressions:

α � arctan * ℑm * a ,
ℜe * a , , �

θ � 1
2

arctan * ) 2
ℜe * e � iαa ,

b
, � 1 ) sgn * b ,

2
π
2

a � K

∑
k ' 1 � ∑

j ��� p

�
k * p � j , � k * q � j , � � k * j � p , � k * j � q ,

) ∑
j ��� q

�
k * p � j , � k * q � j , � � k * j � p , � k * j � q ,	�

b � K

∑
k ' 1 � ∑

j ��� p

* � � k * p � j , � 2 � � � k * j � p , � 2 ) � � k * q � j , � 2
) � � k * j � q , � 2 , ) ∑

j ��� q

* � � k * p � j , � 2 �� � k * j � p , � 2 ) � � k * q � j , � 2 ) � � k * j � q , � 2 ,�

where ℜe * a , and ℑm * a , denote the real part and imaginary
part of a, respectively and

� p � � j � ip

∑
l ' 1

ml � j 
 ip � 1

∑
l ' 1

ml �
� q � � j � iq

∑
l ' 1

ml � j 
 iq � 1

∑
l ' 1

ml �
ip and iq are defined as in (8).
One can notice that an iteration of the approximate JBD al-
gorithm is much cheaper than that of the exact JBD. Unfor-
tunately, because of the approximation, the former algorithm
may require much more iterations to converge. Therefore, its
overall complexity can be higher than that of the exact JBD
algorithm. Next, we present a third approach based on the
joint diagonalization algorithm in [3] that presents a better
compromise between (the per iteration) complexity and the
convergence rate.

4. JBD VIA JOINT DIAGONALIZATION (JD)

In [3], a Jacobi-like algorithm has been introduced to perform
the joint diagonalization3 of a set of matrices

�
1 ��������� � K

under a common unitary transform � . Matrix � is estimated
as a product of Givens rotations but contrary to the JBD al-
gorithm, the optimization of the rotation angles leads to a
quadratic (instead of linear-quadratic) criterion of the form T ˜!  where ˜! is a 3 � 3 (or 2 � 2 in the real case) real-
valued matrix and  is the vector defined in (10). Therefore, corresponds to the unit-norm least eigenvector of ˜! that
can be computed explicitly [3].

Moreover, it is shown that optimizing the JD criterion by
successive Givens rotations leads to solving the same prob-
lem for 2 � 2 matrices: i.e., the optimization of

� �
qp � is

equivalent to the JD of the set of 2 � 2 matrices� �
qp �

k
�� Mk * p � p , Mk * p � q ,

Mk * q � p , Mk * q � q ,�� � k � 1 ��������� K 1 (20)

The iterative algorithm is stopped when at a given sweep (it-
eration) we have4:� �

qp � � � � 1 
 p � q 
 n (21)

which means that the JD criterion (i.e. ∑k ( � H �
k � )

diag *+� H �
k �-, ( 2) cannot be further decreased.

3JD can be seen as a particular case of JBD when mi > 1 +�� i.
4 ���

qp � > 5 is equivalent to s > 0. In practice, we use a small threshold

ε and test if for all 1 : p � q : n, � s ��� ε .
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Based on this, we claim that the JBD can be achieved (up
to a permutation matrix) by applying the JD algorithm to the
considered set of matrices

�
1 ��������� � K . More precisely, we

have the following conjuncture:

Conjuncture 1 Let
�

1 ��������� � K be a set of K matrices
satisfying (1). Then, optimizing the JD criterion for�

1 ��������� � K using the Jacobi-like algorithm in [3] provides
a set of block diagonal matrices up to an unknown permuta-
tion matrix

�
.

This conjuncture comes from the following observation:
if the 2 � 2 matrices in (20) are non-diagonal for values of
p and q corresponding to non-diagonal block entries (i.e.* p � q , 	&� ), then there exists a unitary matrix that transforms
them onto diagonal matrices (because

�
1 ��������� � K satisfy

(1)). Consequently, the JD criterion can be further decreased
and the stopping condition (21) is not verified in this case.

Now, performing the JBD up to an unknown permutation
matrix is not satisfactory as the ‘admissible’ permutations are
only those which preserve the block-diagonal structure (e.g.,
permuting the diagonal blocks or permuting entries within
the same diagonal block is admissible). To get rid of this un-
desirable permutation matrix, two solutions have been con-
sidered:�

In the first one, the permutation
�

is decomposed as a
product of elementary permutations5 � �

qp � . The latter is
considered, at a given sweep, only if it increases the JBD
criterion, i.e.

K

∑
k ' 1 ( bdiag * � T�

qp � � k
� �

qp � , ( 2 � K

∑
k ' 1 ( bdiag * � k , ( 2

�
The second approach consists in determining the per-
mutation from the positions of the non-zero entries of�

k ) bdiag * � k , . This leads to a simple solution (details
are omitted due to space limitation) when the considered
set of matrices satisfies (1) exactly. However, when ma-
trices

�
1 ��������� � K are only approximately JB diagonal-

izable, this approach requires a non-trivial thresholding
to decide whether a given matrix entry is assimilated to
zero or not.

5. SIMULATIONS

We provide here a simulation example to compare the con-
vergence speed (in terms of number of sweeps) of the three
proposed JBD algorithms. We consider K � 4 matrices of
size n � 6 that satisfy exactly (1) (noiseless case) with block-
diagonal sizes m1 � m2 � 3. We evaluate the off block di-
agonal squared norm, i.e ∑k ( � k ) bdiag * � k , ( 2, for each
sweep over 100 Monte-Carlo runs. At each run the matrices
are generated randomly according to (1) (i.e. at each run,
we generate randomly the block diagonal entries � ki � k �
1 ��������� 4 and i � 1 � 2 as well as the unitary matrix � ). In this
example, the convergence rate of the JD-based algorithm co-
incides with that of the exact JBD (E-JBD) algorithm and is
much larger than that of the approximate JBD (A-JBD) algo-
rithm. Also, as shown by figure 1, the JBD criterion reaches
a lower value with E-JBD and JD algorithms compared to
A-JBD.

5 � �
qp � is defined in such a way that for a given vector � , ˜� > � � qp � � iff

x̃ 0 k 6 > x 0 k 6 , for k ���� p + q 	 , x̃ 0 p 6 > x 0 q 6 and x̃ 0 q 6 > x 0 p 6 .
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Fig. 1: Convergence speed proposed JBD algorithms.
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