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ABSTRACT

Projection operators derived from Gabor multipliers are sug-
gested as a time-frequency localization tool. We give a de-
scription of the numerical realization of such projection op-
erators and investigate the dependence of their localization
properties on the parameters used in the definition. We also
provide a comparison with iterated localization operators.

1. INTRODUCTION

Time-frequency concentration is a topic that has been re-
peatedly treated by various authors during the last decades.
The observation, going back to Paley-Wiener, that no non-
zero signal can be simultaneously band- and time-limited
raises the desire for a precise definition of the notion time-
frequency concentration. Various approaches have been sug-
gested. Slepian and Pollak [7] investigated operators consist-
ing of consecutive time- and bandlimiting steps. The eigen-
vectors of the resulting operators are the famous prolate-

spheroidal wave functions, which can be interpreted as being
optimally concentrated in time-frequency in a certain sense.
However, this approach is rather restrictive concerning the
shape of the area to which the resulting operators are con-
centrated. Daubechies [1] suggested a time-frequency con-
centration procedure by means of restricting reproducing for-
mulas to certain areas of the time-frequency plane. This
approach is much more general but only leads to analytic
results for very special cases including the condition that
the generating vector for the coherent system is Gaussian.
Ramanathan/Topiwala [6] and Hlawatsch/Kozek [4] use the
Weyl-correspondence for the definition of the time-frequency
support of a function. Their result can be roughly summa-
rized by saying that the time-frequency support of a signal
corresponds to the effective support of its spectrogram with
respect to a reasonable window. In all of the cited work the
analysis of the eigenfunctions and eigenvalues correspond-
ing to the suggested time-frequency operators play a crucial
role. Here, we suggest to derive families of eigenfunctions
from a class of time-frequency concentration operators called
Gabor multipliers. Gabor multipliers can be seen as a gen-
eralization of Daubechies’ approach: they are derived from
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Gabor frames by masking in the coefficient-space. As the
redundancy of the system used for analysis can be drastically
reduced, this approach allows for numerically very efficient
methods. On the other hand, the freedom in the choice of
the time- and frequency-shift parameters introduces a certain
ambiguity. We will start from a Gabor multiplier given by a
certain mask and define a projection operator by means of the
salient eigenfunctions of the Gabor multiplier. We show how
the number of eigenfunctions concentrated inside the origi-
nally masked area can be estimated. This number turns out
to be relatively independent of the redundancy of the Gabor
system used in the definition of the Gabor multiplier. Finally
we demonstrate the time-frequency concentration achieved
by the resulting projection operators in comparison with iter-
ated Gabor multipliers.

2. GABOR MULTIPLIERS

Time-frequency shift operators are crucial elements in Gabor
analysis. M, and T}, denote frequency-shift by w and time-
shift by z, respectively, of a function g, i.e., M, T,g(t) =
e?mitw g(t — z) for (z,w) € R*. M,T, is a time-frequency
shift operator. Writing A\ = (x,w), M, T, is often denoted
by 7()\) in the sequel. A set of functions f; in L?(R) is
called a frame, if there exist constants A, B > 0, so that

A[IFI2 < DI f)I? < BIFIP forall f € LA(R). (1)

kEZ

The frame bounds A and B are the infimum and supremum,
respectively, of the eigenvalues of the frame operator S, de-
fined as

SF=> Af, i) fi-
k

If A = B the frame is called fight. Here we consider the
special case fr, = gm,n = MmpTheg of Gabor frames. The
coefficients of a Gabor frame, given by [{f, gm,n)|m,n cor-
respond to the samples of the STFT on the product lattice
A = aZ% x bZ°.

Definition 1 (Gabor multiplier) Assume that g € L?, i.e. is
square summable, that A C R2d g TF-lattice (a discrete sub-
group of R?) and m = (m(\))rea a bounded, real-valued
sequence in £>°(A). Then the Gabor multiplier associated



to (g, N) with symbol m is given as

Gm(f) = Ggam(f) =D mN)(f,7(A)g) 7(A)g-

AEA

The subscripts g and A will be omitted if they are not crucial
for the discussion. Note that f — (f, m(A)g) m(\)g (up to a
normalizing factor | g||~2) is the orthogonal projection onto
the one-dimensional spaces generated by 7(\)g. Gabor mul-
tipliers have been described in [3] and investigated to some
detail in [2].

3. EIGENFUNCTIONS AND EIGENVALUES

It is a natural approach to try to describe the behavior of (self-
adjoint) Gabor multipliers through their eigenvectors, which
represent an orthonormal basis for the range of the operators.
In this section, we assume for simplicity that a tight Gabor
frame is used. This assumption makes the eigenanalysis of
Gabor multipliers more comprehensible.

Recall that for tight Gabor systems, a constant multiplier
symbol generates a multiple of the identity operator. When-
ever the multiplier m takes values between 0 and c, the eigen-
values of the resulting Gabor multiplier lie in the interval
[0, c], see [3], provided that A = 1 = B.

Another motivation for studying the eigen-behavior of Gabor
multipliers is the application to time-varying filtering tasks.
Often a 0/1 multiplier, i.e. a characteristic function corre-
sponding to a (usually bounded) region in the time-frequency
plane, will be a first choice for a time-varying filtering task.
However, as the Gabor system under inspection is redun-
dant, the process of filtering by means of the corresponding
Gabor multiplier cannot be a projection and in particular it
is not idempotent. It can even be shown that for multiplier
sequences with compact support repeated application of the
operator to any given signal even yields a series of result-
ing signals converging to zero. This can been seen by noting
that in this case all eigenvalues of Gy, must be less than 1,
as ||Gm|| < 1. With projection operators we can achieve
better concentration inside a given masking region than with
conventional methods like the LSE (least square error) fil-
ter and with less computational effort than the iteration fil-
ter suggested by Qian and Chen in [5]. For a 0/1 multi-
plier, for instance, we expect the eigenvectors corresponding
to the eigenvalues close to 1 to be well concentrated inside
the mask. Hence a projection onto the eigenvectors corre-
sponding to eigenvalues above a certain threshold p should
generate a good result, i.e. a signal which is nicely concen-
trated inside the region of interest and close to 0 outside. Nu-
merical examples confirm the applicability of this approach.
We give a precise mathematical description of the situation
next: Let a tight Gabor system (g, A) with g € Sy be given.
Denote by My a masking region, centered around A = 0
without restriction of generality!, with Mz C Bg(0). Let

TAll results in the sequel can be stated and proved analogously for any
A € A due to A-invariance of the essential properties of the operators.

the finite-dimensional approximation of the frame operator
S be given as

Srf=>_ (f92)9n )

AEMRNA

which is a compact, self-adjoint operator. Let ¢ be the
eigenvectors of S corresponding to its eigenvalues . We
fix a threshold p > 0 and define the following subspaces
of L2(RY): Hp = range(Sgr), Er = span{ol|k € Ig},
where Z¢ = {k : |af| > p}. Note that due to the spectral
theorem for compact, self-adjoint operators, Hp = Er ®
Rp and with ITp = Z% U “I%, we can write the finite-
dimensional approximation of the frame operator as Sp =
Y okezn Ok (fr0R)@r. We now obtain the following two
statements which have been proved in [2].

The first two relevant facts imply that for any function ob-
tained by localization through masking can also be approx-
imated arbitrarily well by linear combinations of the corre-
sponding eigenfunctions, while the second statement (Thm. 1)
shows that the eigenspaces for large eigenvalues “exhaust”
the time-frequency plane for expanding regions. More pre-
cisely we have the following results:

Proposition 1 Fix Ry > 0. For any € > 0, there exists Ry
such that for all f € Hp,

If — Srfll3 <ellflI3 forall R > R;.

Theorem 1 For any fixed p, 0 < p < ||S
is dense in L2(R%), i.e.

, the union of Ep

U Er =L*R).
R>0

The above statements motivate an approach using eigenfunc-
tions of Gabor multipliers for describing signals concentrated
in certain regions of the time-frequency. The next section
deals with the calculation and properties of the projection
operators.

4. PROJECTION OPERATORS

We define the rank /N-projection operator Py with respect to
a mask m and a Gabor frame G as

N
PR = "(f. o0)en, 3)
k=1
where ¢,k = 1,..., N the eigenvectors corresponding to

the N biggest eigenvalues of the Gabor multiplier generated
by G and m.

4.1. Calculating the eigenvectors

The calculation of the eigenspaces of Gabor multipliers can
be realized with a numerical effort corresponding to the size
of the masked area rather than the signal-length. Let the ma-
trix G' be defined as the £ x n matrix having g, ,, as its
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(m + nM)-th row. The numerical realization relies on the
fact that for rectangular matrices G with size k x n, where k
is the number of building blocks inside the masking area and
n is the signal length, the eigenvectors of the frame opera-
tor S = G*G can be obtained from the eigenvectors of the
Gramian matrix I' = GG*. As we assume k << n here, this
is numerically a lot cheaper than calculating the eigenvectors
of S directly. In fact, let ;, 7 = 1,. .., k be the eigenvectors
of S such that Sp; = a;¢;. f Tw; = ajw;, then

k
1 )
0= ——> wi(i)g.
V& i

Typically, the eigenvectors corresponding to eigenvalues close
to 1 of a Gabor multiplier with a rectangular 0/1 mask are
concentrated inside the mask. In all subsequent examples,
the signal length will be 144. Any numerical realization of
practically interesting tasks requires the choice of systems
with low redundancy. The choice of the lattice A and the
choice of the window thus entail certain parameters of free-
dom whose influence on the behavior of the eigenvalues and
eigenvectors of the resulting operators will be investigated
in the sequel. It will be shown that the eigenspaces are rel-
atively independent of these parameters, which is a desired
feature.

In the present section we want to study the TF-localization
behavior on a quantitative level. We are interested in the con-
nection between eigenspaces generated by a certain number
of eigenfunctions of Gabor multipliers obtained from differ-
ent Gabor systems and the same symbol (mask). According
to Theorem 1, in the limiting case the eigenspaces become
independent of the lattice. Numerical evidence will be given
for the following statement:

Proposition 2 For given tight Gabor frames G; and a mul-
tiplier m in £°°(\), consider the subspace EY; generated by
the first N eigenvectors of the operator Gy, n, m. Then for
a fixed error €, any function f; in a Ny-dimensional sub-
space spanned by the first Ny eigenfunctions of Gg, A,.m
can be represented up to the error ¢ as a linear combina-
tion of N eigenfunctions of Gy, A, m,t = 2,...,k, with
N2 = N1 + E(€, Nl,m).

We carry out the following experiment: 3 tight Gabor sys-
tems with lattice parameters (a;, b;);=1, .. 3 are considered,
the length of the signals is n = 144. The mask is cone-
shaped, centered around 0 and restricted to the area 71 x 71.

Systems I - II1

a || b | Redundancy | Lattice points inside the mask
91 3 5.3333 161
91 4 4 119
4|3 12 391

By the choice of the shape of the mask, the eigenvalues are
strictly decreasing, and as a consequence the TF-concentration
of the eigenfunctions is nicely centered around 0. Hence, the
size of the area covered by the eigenspace spanned by eigen-
functions ¢1, . .. ¢ grows in a concentric manner. Now, for
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Table 1: Results of Experiment

errho(j) || Systeml | System2 | System3 ||

System 1 0.0000 0.0247 0.0334
System 2 0.0246 0.0000 0.0108
System 3 0.0325 0.0104 0.0000

| errbs(j) || Systeml [ System2 | System3 ||
System 1 0.0000 0.0100 0.0126
System 2 0.0094 0.0000 0.0014
System 3 0.0096 0.0006 0.0000

| erriy(j) || Systeml [ System2 | System3 ||
System 1 0.0000 0.0042 0.0043
System 2 0.0049 0.0000 0.0000
System 3 0.0051 0.0000 0.0000

all systems, the projections onto the first 20, 25 and 30, re-
spectively, eigenfunctions were determined, denoted by Py,
where N is the dimension of the eigenspace, hence the rank
of the operator, and i is the respective Gabor system from
which the operator has been derived. The following measure
for the error in approximation was then introduced:

M . 4
> _IPyel = el
k=1

i 1
erry(j) = Y

where N is the rank of the projection operator Py, i is the
system from which it is derived. i,k = 1... M are the
eigenvectors derived from the System G; and M is the di-
mension of the eigenspace we wish to represent. In our ex-
periment, M was chosen to be 20, and the approximation
quality for N = 20, 25, 30 was investigated. The results can
be found in Table 1. The indexes ¢ = 1,...3 run from top
to bottom and j = 1,...3 from left to right, i.e. in the first
row and second column the approximation error of the first
system approximating the second can be read.

Proposition 2 implies that the eigenspaces generated by eigen-
functions of Gabor multipliers corresponding to various dif-
ferent Gabor frames grow concentrically and cover each other
as long as enough eigenfunctions are chosen from each sys-
tem. The differences between the eigenspaces are small com-
pared to the size of the region of time-frequency concentra-
tion.

The next section gives a criterion for the number of eigenval-
ues which yields an optimal concentration inside the masked
region.

4.2. The number of eigenvectors concentrated inside a
mask

Proposition 3 Let a tight Gabor system G = (g,A), A =
w2 x 217, i.e. with redundancy o = % be given. Further-
more, assume a 0/1 mask such that k sampling points of A
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Figure 1: Number of eigenvectors inside a mask

fall inside the mask. The number K of eigenvectors concen-
trated in the masked region of the time-frequency plane can
be estimated by K = % This number corresponds to the
number of eigenvalues greater than or equal to 0.5.

Note that this numerical criterion is in accordance with a re-
sult by Hlawatsch and Kozek in [4].

Figure 1 shows the results of eigenanalysis of three different
tight systems G;,¢ = 1, ..., 3. The systems have redundancy
1.5, 2 and 6, respectively. Again, the signal length n was
144, and the mask was a square of size 94 x 94, centered
about (0, 0). For the three systems, 77, 121 and 345 points,
respectively, fall into the masked region, hence the num-
ber of eigenvectors can be approximated by % = 51.333,
% = 60.5 and 3% = 57.5. The first plot shows the eigen-
values of the Gabor multipliers corresponding to the three
systems. The critical values, corresponding to the numbers
of eigenvectors given above rounded to the closest integers,
are marked. Note that the systems’ redundancies differ signif
icantly, leading to different actual mask sizes. Still the distri-
bution of eigenvalues is very similar.

The next plots show the mask and the short-time Fourier
transforms of the projection of random signals onto the eigen-
vectors. These projections correspond to the projection op-
erators of rank K, K = 52,60,57, for the systems 1,2, 3,
respectively. The number of eigenvalues «; > 0 was 51, 60
and 56, respectively, for the three systems.

4.3. Comparison with iterated localization operators

We finally compare different methods that have been sug-
gested for tackling time-varying filtering tasks. As men-
tioned before, in [5] Qian and Chen propose iterated local-
ization operators in order to increase the concentration of
the resulting signal inside a given masking region. Hence
we compare their method with the proposed projections on
bases of eigenvectors. Iterated localization operators result
from applying a Gabor multiplier (with 0/1 symbol) to a sig-

nal repeatedly. The improvement in concentration inside the
masking region is obvious from observing the eigenvalue dis-
tribution. As we have G,,, = UXU*, where U is a unitary
operator and X denotes the diagonal matrix of eigenvalues, it
follows that GX, = U(X)*U*, for k iterations of G ,,. How-
ever, this method requires high computational effort. The
concentration of the projection onto the most salient eigen-
vectors of a Gabor multiplier as suggested by Proposition 3
has been investigated and the concentration achieved by pro-
jection onto salient eigenvectors was indeed comparable to
the result achieved by the iteration method. Hence, in or-
der to achieve good time-frequency concentration, either it-
erations of a low-redundancy Gabor multiplier must be per-
formed or the eigenvectors of a concentration operator must
be obtained. As described in Section 4.1, the eigenanalysis
can be realized in a numerically efficient manner.

5. CONCLUSIONS AND FUTURE WORK

We suggested the usage of projection operators as an attrac-
tive alternative to conventional time-frequency localization
methods. By means of analysis of the eigenvalues and eigen-
vectors of Gabor-multipliers, we investigated the achievable
concentration in the time-frequency plane. With the aid of
these results, we plan to develop methods tailored to filtering
tasks in certain signal classes, such as music signals com-
prising contributions from different instruments. It will be
the topic of future research to classify the necessary compu-
tational effort and the resulting improvement in more detail
and with respect to specific time-varying filtering tasks.
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