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ABSTRACT

It has been previously shown that chirp signals can be
manipulated into a minimal time-bandwidth product (TBP)
form in its so called natural domain, via fractionally Fourier
transforming. Here we show that the time-bandwidth prod-
uct (TBP) of the signal can be achieved in various other
ways, under the class of Linear Canonical Transforms (LCT),
which can be decomposed into shearing operations in time
and frequency of the energy support of the signal. A general
background on LCT is built, and its possible uses for obtain-
ing the GTBP are presented.

1. INTRODUCTION

Time-frequency distributions providing high resolution has
long been desirable. Wigner distribution maintains high lo-
calization, however it desperately suffers from spurious val-
ues in the presence of multi-components or noise. Short-
time Fourier transform offers an alternative, albeit with
an inherent localization problem. Adaptive and heuristic
methods have been used to search for an optimal window
[1,2,3,4,5, 6]. Recently, a new method has emerged [7],
which attains high localization properties using fractional
Fourier transform.

In this work, starting from basic shearing operations, we
arrive at a generalization to the group of linear canonical
transforms (LCT). Signals with smaller time-frequency sup-
port are represented with higher resolution, and the minimum
time-bandwidth product form of the signal be achieved in
several ways, either rotating the support of chirp-like signals
at a suitable angle [7], or simply shearing it. In fact, both
operations are particular forms of LCT. Here we present a
generalized method for improving the STFT using LCT.

General background on LCT is constructed in the next
section, followed by third section introducing the use of LCT.
The results are discussed in the fourth section, followed by
the future work in the fifth section.

2. BACKGROUND ON LINEAR CANONICAL
TRANSFORMS

The linear canonical transform of f(u), denoted fy,(u) =
Cpif (1) is defined as [8]:
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where Ay = \/B e~/™*_The linear canonical transform op-
erator 6, is defined by three real parameters a, 3, y, which

can be conveniently represented in matrix form M as:
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This matrix representation is particularly useful for providing
insight to decompositions of LCT. Matrices of the following
forms are of particular interest to us:
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The transforms associated with these two are as follows [8]:
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The first one is known to be chirp convolution and it
shears the support of the signal in time, i.e. parallel to time
axis; whereas the second one -chirp multiplication- shears
the signal support in frequency, i.e. parallel to frequency axis
(Figures 4-5). If the signal is transformed through %; » then

the Wigner distribution is affected as [8] :
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It is well known that any linear canonical transform can
be broken down to combinations of chirp multiplications and
chirp convolutions. In fact, more than 3 of these operations
are redundant, since the space of the unit-determinant 2 x 2
matrices M can be spanned by suitably chosen parameters

for Q and R as
M= quRrqu (®)

We now have enough tools of manipulating the signal
support using time and frequency shearing. For more on the
effect of LCT on energy distributions and other matrix de-
compositions, the reader is referred to [8]. In the next sec-
tion, we will present how to use shearing in obtaining STFT
of higher precision.

Qq

3. STFT PROCEDURE WITH LCT

Up to now we have seen the effect of shearing on the sig-
nal’s energy distribution. Rotation property [9] of the frac-
tional Fourier transform allowed us to implement the GTBP-
optimal STFT at a single step with suitably chosen win-
dow [7]. We propose an equivalence relationship for the
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inverse-mapped TBP-optimal STFT of the sheared signal
with the GTBP-optimal STFT. In fact, this is true for any lin-
ear canonical transform used to achieve the minimal TBP, as
we will show later. The TBP of the intermediate signal x, (),
is the same as GTBP for any chirp signal. We introduce the
foretold STFT procedure hereby.

ay(t) | STFT | Dy(t, f)
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Figure 1: STFT procedure with frequency shearing.

Suppose that x(¢) is a chirp signal with rate q. We first
multiply it with the chirp e*i"qtz, shearing in frequency. Now
the signal, lying parallel to time axis in time-frequency plane,
has the minimum possible TBP. We know that the optimal
window for the STFT of this signal is given by [7]:

W) = eV 9)
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where By, and Ty, are the bandwidth and duration of the
sheared signal. Henceforth, the effect of the chirp multiplica-
tion is to be undone. But this is realized simply by coordinate
transformation using the matrix Q, with a change of the win-
dow function, relying on Theorem 1 in the Appendix.

D(t.f) = ™ STFT;* " (1. ) (an
In equation (11), we can ignore the unit magnitude e/™ ?
term; since we are interested only in the magnitude. Thus,
output to any system using the above procedure will be com-
putable at the same cost as a single STFT. There is an equiv-
alent result for the chirp convolution by Theorem 2.

D, (t,f) =™ STFT-M ¢, f) (12)
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Figure 2: STFT procedure with time shearing.

Finally, from Theorems 1,2 and equation (8) we have the
following lemma:

Lemma 1. The following system, €\, being any linear
canonical transform, can be implemented as a single STF'T.
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Figure 3: STFT using linear canonical transform.

Figure 4: TBP of a chirp signal Figure 5: TBP of the sheared

chirp
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Figure 6: TBP-optimal STFT Figure 7: GTBP-optimal STFT

with frequency shearing

Proof. Since any LCT can be decomposed into following op-
erators as defined by equation (8),

S () = %qu {%R,.{%quf}}(u) (13)

we can consider the system as a cascade of chirp multiplica-
tion and convolutions as we previously defined, which can
be simply turned into a single STFT by inversely operating
on the window. Therefore, the above system can be simply

realized as STFT;C(//ﬁlh) (t, 1). O

Figures 6-7 shows an example of the above procedure
with a chirp signal. We consider the incident as shearing the
signal in frequency, so that the chirp multiplied signal’s en-
ergy support is parallel to time axis. We also estimate the
optimal y parameter which should yield the maximum reso-
lution. Calculations reveal that the TBP achieved this way is
equal to GTBP.

4. DISCUSSION

We have demonstrated why chirped-windows perform bet-
ter than ordinary gaussian windows in the case of chirp-
like signals, and the equivalence of the methods of using
chirped windows [6] and TF-rotated windows [7] by present-
ing a general relationship between the class of linear canon-
ical transforms and the short-time Fourier transform. Linear
canonical transforms provide an elegant class of tools for,
since they are symplectic and linear, as their name suggests.
They can be used as a basis for manipulating the signal sup-
port to achieve reduced generalized time—bandwidth prod-
uct while guaranteeing applicability for composite signals as
well as monocomponent signals.

In application, however, one should note that we cannot
arbitrarily use chirp multiplication (or convolution) with a
very high chirp rate. One reason is that aliasing in frequency
(or time) occurs after this operation. It is still possible to gain
advantage at a reasonable cost of oversampling. Secondly,
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although it seems very high chirp rates will bring more ad-
vantage since the signal support approximates to a straighter
shape. In reality, the inversion matrix of the linear canoni-
cal transform has reciprocal eigenvalues so that the condition
number is proportional to the square of the chirp rate, hence
corresponding to an ill-conditioned system. Again, sampling
rate becomes the determining factor of the availability for
highly straightened (reduced TBP) signal supports.

5. CONCLUSION

In this work we have provided a broad class of transforms
for possible use with short-time Fourier transform systems,
so that one can reduce the effective time-bandwidth product
that determines the resolution (instantaneous bandwidth) of
the time-frequency representation. The transformations can
be easily realized as cascaded chirp multiplications and con-
volutions, each having a computational complexity of O(N).
The overall system can always be performed as a single
short-time Fourier transform, as the window goes through
the inverse of the linear canonical transform that reduces the
time-bandwidth product of the analyzed signal. Our system
makes no assumptions on the signal type, so that it applies to
both monocomponent and composite signals.

6. FUTURE WORK

Although a broad class of operators are included with this
procedure, it is computationally expensive to search for the
optimum linear canonical transform that brings the time-
bandwidth product to the global minimum. Further research
is required on generating a suboptimum algorithm that is
easy to apply. Once the required parameters are known, a
time-frequency projection of linear time-invariant systems
can take place as a subsystem within the given short-time
Fourier transform procedure.

A. APPENDIX

Theorem 1. Let y(t) = 2_x(t) so that y(t) = e/ x (1),

then magnitude-wise

STFTMt, f) = STFT\ " (t,—qt + f) (14)
Proof. Starting from the STFT of y(¢):
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Theorem 2. Let y(t)

where
Y(f) = F{x(t
Then magnitude-wise

STFT!(t,f) = STFT "™ (rf +1,f) (18)

Proof. Writing down the first expression:
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