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ABSTRACT 
In this paper, a suboptimal low complexity structure for joint 
linear detection of CDMA signals is proposed. The optimal 
joint linear zero-forcing or minimum mean squared error 
detectors use a vector model of the transmission where the 
channel is represented by a matrix. Due to the finite memory 
of the channel, most of the blocks of the channel autocorrela-
tion matrix are equal to zero. It is then possible to put this 
structure into profit to derive low complexity implementa-
tions for these detectors. In this paper, the optimal linear sys-
tem resolution is approximated by overlapped smaller sub-
systems. The performance and the complexity of the result-
ing detector are analyzed for both downlink and uplink 
communications over frequency selective channels for peri-
odic spreading codes with a period equal to the symbol pe-
riod as well as for random-like codes. The trade-off between 
complexity and performance is flexible, which offers a great 
advantage to the proposed solution.  

1. INTRODUCTION 

Code division multiple access communications suffer from 
both multiple access interference and inter symbol interfer-
ence. The optimal multi-user receiver has a complexity 
which grows exponentially with the channel memory P 
(measured in modulation symbol periods) and with the num-
ber of active spreading codes K. Therefore, sub-optimal re-
ceivers such as block linear receivers, interference cancellers 
or RAKE receivers have been proposed to handle the com-
plexity issue.  
The block linear multi-user receivers with MMSE (Minimum 
Mean Squared Error) or ZF (Zero Forcing) criteria give good 
performances [1]. They make decisions on blocks corre-
sponding to N modulated symbols for K spreading codes. 
The size of the blocks is usually linked to the size of the 
bursts of the transmission format, which can be very large. 
The optimal joint linear ZF or MMSE detectors use a vector 
model of the transmission where the channel is represented 
by a matrix. The optimal solution consists in solving a linear 
system of size KN. Several algorithms have been proposed to 
minimize the complexity of the system resolution by exploit-
ing the property of the channel autocorrelation matrix. Effi-
cient reduction of the complexity is obtained for synchronous 

downlink transmission where the spreading codes are peri-
odic with period equal to the modulation symbol period [2]. 
Due to the finite memory of the channel, most of the blocks 
of the channel autocorrelation matrix are equal to zero. Then, 
the truncation of the block processing window has been sug-
gested in [3]. Finite-memory MMSE linear equalizer has 
been proposed in [4], performance has been evaluated for 
asynchronous transmission over non selective propagation 
channels.  
In this paper, a low complexity implementation for finite-
memory detectors is proposed as follows: the resolution of 
the whole system is replaced by the resolution of N over-
lapped smaller subsystems of size nK with n lower than 
2P+1. The algorithm is valid for periodic or non periodic 
spreading sequences, for both downlink and uplink commu-
nications over frequency selective channels. The paper is 
organized as follows. The CDMA transmission model and 
the block linear receiver are defined in section 2. The pro-
posed algorithm is described in section 3. Complexity issues 
are discussed in section 4. Performance analysis is given in 
section 5. Numerical results are given for the TDD (Time 
Division Duplex) mode of UMTS (Universal Mobile Tele-
communication System). 

2. CDMA TRANSMISSION MODEL 

In a CDMA cellular system, the spreading codes result from 
the product of a channelization code and a scrambling code. 
In the TDD mode of UMTS, for example, the spreading 
codes are periodic and they are furthermore orthogonal [5]. 
In the FDD (Frequency Division Duplex) mode, the spread-
ing codes have long period, i.e. the signature varies from one 
symbol to another. Even for orthogonal codes, because of 
multi-path propagation and of time misalignment between 
different mobile stations (in the uplink), signals lose their 
orthogonal property at the reception. This loss of orthogonal-
ity depends on the correlation properties of the spreading 
waveforms and on the propagation conditions as well. 

2.1 Transmission model 
The received CDMA signal is given by: 
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where N is the number of the modulation symbols in the 
burst, K is the number of active codes (or users), ui

(k) is the ith 
data symbol of user k, pi

(k) is the spreading waveform of user 
k during symbol i. Mc is the number of coefficients in the 
channel impulse response model, cn

(k) and τn
(k) are respec-

tively the nth complex coefficient and delay of the channel for 
user k. β(k)  includes power amplification, path-loss and shad-
owing attenuations. The channel is assumed to be invariant 
during the burst. ν(t) is the white additive Gaussian noise 
with one side Power Spectral Density equal to N0. The 
spreading waveform has the following expression:  
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where Q is the spreading factor, viQ+n
(k) is the nth chip of the 

spreading code during symbol i of user k, g(t) is chip wave-
form, which is usually a square root raised cosine filter.  
The received signal can also be written as: 
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hi
(k)(t) is the global channel response including the signature 

and the channel impulse response for user k during symbol i. 

2.2 Equivalent discrete-time channel model 
At the receiver side, the signal is filtered and sampled at the 
rate 1/Te =  J/Tc (with J ≥ 2).  
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Let Z be the vector of the received signal for the entire block 
of N symbols, its length is Nz  =  JN + L, where L is the maxi-
mum length of the sampled global responses (measured in 
Tc / J intervals). Using a matrix-vector notation, it can be 
written as: 

WAUZ +=  

W is the sampled filtered noise vector. U is the vector of the 
data symbols ordered as follows: 
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The matrix A is built of N sub-blocks Hi. Each column vector 
of Hi represents the sampled global channel impulse response 
of user k as shown below.  
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2.3 Optimal joint block linear equalizer 
The optimal joint block linear equalizer (BLE) makes deci-
sions on the whole data vector Z through a linear transforma-
tion given by: ZU Λ='  where Λ is a matrix of size NKx Nz, 
utilising the ZF or MMSE criterion applied to U’ − U. These 
criteria lead a solution given by: 

YMU 1' −= , where ZAY h=  

The matrix M equals AhA + σw
2I for the MMSE criterion and 

equals AhA for the ZF criterion. The matrix M is an autocor-
relation matrix, having hermitian symmetry and block struc-
ture. The Cholesky algorithm can then be used to solve the 
system MU’ = Y.  
Due to the finite memory of the autocorrelation of the chan-
nel AhA, most of the blocks the matrix M are equal to zero. 
For the particular case of periodic codes with period equal to 
the symbol period, the matrix is furthermore block Toeplitz 
with 2P+1 block Bk of size KxK (cf. figure 1). Reduced com-
plexity algorithms have been proposed in that case in [2] to 
solve the whole system.   

nK = (2P+1) K

K x N

M = 

B 0 B 1 B P

B 0 B 1 B PB 1
HB P

H

B 0 B 1 B PB 0 B 1 B P

B P
H B 1

H B 0

B P
H B 1

H B 0B P
H B 1

H B 0

 

Figure 1: Block Toeplitz structure of the matrix M for sym-
bol-period codes . 

3. PROPOSED SUB-OPTIMAL LINEAR 
EQUALIZER 

Due to the finite memory of the autocorrelation of the chan-
nel AhA, most of the blocks are null. This structure is put into 
profit to derive low complexity implementations for the de-
tector. The proposed sub-optimal detector consists in consid-
ering smaller block matrices of size nK with n equal to 2P+1 
(cf. figure 1). For complexity reasons, the size can be educed 
toa lower value n = 2D+1. 
Let Mi and Yi denote the portion of matrix M and vector Y 
corresponding to the subsystem involving the finite-memory 
vector Ui’ = [ui-D’(1)..ui-D’(K) … ui’(1)..ui’(K) ….ui+D

’(1)..ui+D
’(K) ]t 

with n = 2D + 1: 

U’i = ( Mi)−1 Yi                                                       (1) 
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In order to avoid border effects, the decisions are made only 
on the ith centred data symbols of the K users 
U’i,t = [ui’(1)..ui’(K)], which leads to the truncated solution: 

                      U’i,t = [ Mi
−1 ]t Yi                                    (2) 

[Mi
−1]t denote the K central lines of the matrix 

Mi
−1. Therefore, there is an overlapping between subsystems, 

and the size of the truncated matrix is equal to KxnK For a 
channel length inferior to one symbol duration (P = 1), the 
matrix Mi is a matrix of size 3Kx3K only. It should also be 
pointed out that for transmission with periodic codes with 
period equal to the symbol duration, the matrix Mi is always 
the same for each symbol. 

4. COMPLEXITY EVALUATION 

Assuming that the channel impulse responses are estimated 
with the help of training sequences, the blocks of the matrix 
AhA can be computed.   
Then the size of subsystems n is chosen so as to obtain the 
best trade-off between complexity and performance. Typi-
cally, n equals (2P+1). However, n can be chosen lower than 
2P+1 if required by complexity constraints.  
Note that for most channels of practical interest for the TDD 
mode of UMTS, P equals 1 with a spreading factor of 16, 
except for the vehicular B channel model, where P equals 5.  

4.1 Subsystem resolution with block–Levinson algo-
rithm for periodic codes 

The complexity of the proposed receiver can be very low for 
periodic codes with period equal to the symbol period. This 
property is realized in practice for the TDD mode of UMTS 
in the downlink with spreading factor equal to 16. The matri-
ces Mi are all identical, and they are moreover block Toeplitz. 
In that particular case, it becomes interesting to invert the 
matrix once per burst and then to compute the N sample vec-
tors U’i,t according to equation (2). This solution is computa-
tionally efficient because the computation of the matrix in-
version Mi

-1 can be done by means of the block-Levinson 
algorithm having a computation complexity order given by 
O(n2K3) [6]. Then, the computation of decision symbols gen-
erates K2nN multiplications and K2(n−1)N additions. 

4.2 Subsystem resolution with Cholesky algorithm  
When the matrix is not block Toeplitz, the inversion of the 
matrix is more consuming than the Cholesky algorithm. The 
algorithm is two steps: decomposition of the matrix Mi  into a 
product LiLi

h where Li is a low triangular matrix and iterative 
resolution of two successive systems LiX’i=Yi and Li

hU’i =Xi . 
The first step generates a computational complexity which is 
proportional to nK(nK+1)(nK−1)/6 ≈  n3K3/6.  
For a periodic code with period equal to mQ, this decomposi-
tion is made m/Q times per burst. For random-like codes, it is 
realised N times since the equivalent channel is varying from 
one symbol to another. 
The second step leads to (N−2D)(DK+1)(3DK+2) operations 
for n equal to 2D+1. 

4.3 Numerical results 
Some numerical results are here given to illustrate complex-
ity issues of the proposed algorithm. 
A first example is given for periodic codes: Q = 16, m = 1, 
K = 8, N = 61.  
For small channel memory (P = 1) and therefore for small 
subsystems (n = 3) both proposed algorithms are equivalent 
in terms of complexity. The algorithm described in 4.1 leads 
to 408 + 11 712 = 16 120 computations (MAC, multiplica-
tions, additions and comparisons). The algorithm described 
in 4.2 gives 2 300 + 13 806 = 16 306 computations.  
For long channel memory, the first proposed algorithm be-
comes much more efficient than the second one. For P equal 
to 4 and n equal to 9, the complexity of the first algorithm 
leads to 41 472 + 35 136 = 76 608 computations instead of 
62 196 + 172 402 = 233 598 for the second one.  
A second numerical example is given for varying spreading 
factors between 4 and 16, the codes are periodic with a pe-
riod equal to 16 chip periods (like in the uplink of TDD 
UMTS mode), and for different channel memory lengths 
given in chip periods pTc. Table I gives the complexity for a 
constant throughput given by NK = 488 data symbols per 
burst. It is worthwhile to note that computation limitation 
may influence the choice of the spreading factor according to 
the channel length (cf. Table I).  

Q K N p P n 1st step 2nd step total

16 8 61 57 4 9 62196 171402 233598
8 4 122 57 8 17 104788 342804 447592
4 2 244 57 15 31 158844 610328 769172

16 8 61 16 1 3 2300 13806 16106
8 4 122 16 2 5 2660 27612 30272
4 2 244 16 4 9 3876 55224 59100

16 8 61 8 1 3 2300 13806 16106
8 4 122 8 1 3 572 8400 8972
4 2 244 8 2 5 660 16800 17460

16 8 61 4 1 3 2300 13806 16106
8 4 122 4 1 3 572 8400 8972
4 2 244 4 1 3 140 5808 5948

Table I. Complexity evaluation of the 4.2 algorithm for dif-
ferent channel lengths and spreading factors with a fixed 

throughput. 

5. PERFORMANCE ANALYSIS 

5.1 Performance evaluation 
Decisions are made on the sample vectors U’i,t which have 
the following expressions:  

U’i,t = [ Mi
−1]t Ai

h AU +  [ Mi
−1]t  Ai

h W 

We can easily derive the signal to noise ratio at the output of 
the receiver on the decision samples, which can be expressed 
by:  
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where Pi,k denotes the received power of user k for symbol i, 
σ2

i,k  is the variance of the residual multiple access and inter-
symbol interference, λi,k represents the  noise amplification at 
the out put of the receiver. They can be expressed a function 
of the matrices AhA, Mi

-1 and  Ai
h. The bit-error-rate evalua-

tion is approximated, for QPSK modulation, by:  

( )kiki SNRQBER ,, ≈                         

5.2 Performance results 
In this subsection, we present some performance results. The 
evaluation has been carried out with UMTS TDD transmis-
sion parameters [5]: the chip rate is equal to 3,84 Mchip/s 
and the roll-off of the chip waveform is equal to 0,22, the 
spreading factor is 16.  
When n is taken equal to 2P+1, the performance of the pro-
posed algorithm is very close to the performance of the ideal 
block linear detector for any number of users and for any 
channel profile.  
In order to manage complexity issues, the size of subsys-
tems can be reduced to a fixed arbitrary value n lower than 
2P+1. Figures 2 and 3 evaluate the degradation due to trun-
cation when the channel memory is long (P = 5). It is worth-
while to note that the degradation increases with the number 
of codes when n is smaller than 2P+1. 
Figure 2 shows the performance of the proposed algorithm 
with the lowest value for n with 8 users. The obtained per-
formance is compared to the ideal joint detector perform-
ance and to the RAKE receiver performance. The channel 
impulse response is constant with amplitude in dB equal to 
 −2,5 0 −12,8 −10 −25,2 and delays expressed in nanosec-
ond given by 0 300 8900 12900 17100. 

 

Figure 2. Comparison of the truncated detector with other 
receivers on a fixed channel: Q=16, K=8, P=5, n=3. 

Figure 3 evaluates the effect of truncation over a random 
channel for the downlink (P = 5). It gives the mean bit error 
rate (averaged over users, symbols and channel responses) 
as a function of the mean energy per bit Eb over N0. This  
shows the trade-off between complexity and performance.  

 

Figure 3. Influence of the truncation order n over the random 
ITU Vehicular B channel:  K=8, Q=16, P = 5.  

6. CONCLUSION 

A low complexity joint detector has been proposed and per-
formance analysis shows that it can be a good candidate for 
CDMA communications using either short periodic codes or 
long codes. Its complexity can be constrained for long 
memory channels, and the performance degradation is not 
severe, which gives an alternate solution between the ideal 
block linear detector and the rake receiver. 
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