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ABSTRACT
We consider the problem of binary distributed detection
when the target position is unknown in the context of large-
scale, dense sensor networks. We propose to divide the area
where the target could be present into smaller ones, perform-
ing a log-likelihood ratio fusion rule in each one. We derive
the Bayesian and NP fusion rules under using a model of
probability of detection that makes no assumptions on the
local decision rule. The performances of both tests is ana-
lyzed using large deviation bounds on the error probability
and a parametric approximation to the probability of detec-
tion function. The main conclusions of the analysis of these
bounds are that, for designing efficient tests in terms of en-
ergy consumption, 1) the exploration area for each test must
cover the area in which the target could be present extended
by a distance that is less or equal to the range of the local
sensors, depending on the type (Bayes or NP) test, and, 2)
the pattern for dividing the large area into smaller ones is the
area inside the range of a local sensor.

1. INTRODUCTION

In 1986, Chair and Varshney [1] determined the optimum
Bayes decision fusion rule for the binary distributed detec-
tion problem when the local detection rule is known. Two
years later, Tsitsiklis [2] shown that when the number of sen-
sor is arbitrarily large, the optimal binary decentralized de-
tection is achieved by identical local detection rules. From
that, many author have proposed and analyzed different op-
timal fusion rule under a variety of criteria (see [3] and the
references therein for a review on this topic).

On the other hand, the recent advances in the develop-
ment of small and low powered devices that integrate sens-
ing, processing, and wireless communication capabilities [4]
make possible the large-scale, dense and random sensor net-
works where the above algorithms are valuable tools. Nev-
ertheless, some of the hypothesis of the original problem has
to be revised. First, the conditional probability distribution
under each hypothesis in each sensor can be different due to
the spatial variation of the signal (or source, or target) to be
detected and, second, if the sensors are identical as suggested
in [2], the Probability of False Alarm (PFA) and Probability
of Missdetection (PM) must vary from sensor to sensor ac-
cording to a its position. Authors in [1] have been considered
different PFA and PM for each sensor, but no further analysis
was given.
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In a previous paper, [5], we proposed a model in which
the probability of detection (including false alarms) of the
sensor varies as a function pd of the distance between the
sensor and the source or target to be detected, and we con-
sider the simple problem of detecting a target knowing its po-
sition and the position of the sensors under both Bayes and
Neyman-Pearson (NP) tests. In this paper, we extend these
results to the case in which the position of the target is un-
known. Given an area where the target could be present, we
propose to partition this area into smaller ones, in one of them
computing one binary composite hypothesis log-likelihood
ratio (LLR) test. Based on large deviation bounds on the
error probability and a parametric approximation of p d , we
obtain the optimum size of the partition.

The paper is organized as follows. The statement of the
problem and the notation used in the paper is established in
Section 2. The LLR tests are derived in Section 3. Section
4 is devoted to the analysis of large deviation bounds on the
probability of error. The optimization of the tests is done in
Section 5, and the conclusions end the paper.

2. PROBLEM STATEMENT AND NOTATION

A target could be present in some point of the area D ∗ ∈ R
2.

If no other information is available, we assume a uniform dis-
tribution over D ∗ of the target coordinates. D ∗ is partitioned
into D smaller areas D ′

j ∈ R
2; i.e. D∗ =

⋃D
i= j D

′
j. A target

is decided to be present if it is detected in, at least, one area
D ′

j. The detection of a target in D ′
j is performed by explor-

ing an area D j ∈ R
2 such that D ′

j ⊆ D j. The exploration of
D j gives as a result the data set {(x ji,y ji) : i = 1, . . . , l, x ji ∈
D j,y ji ∈ {0,1}}, when each pair (x ji,y ji) represents a suc-
cessful reading of a sensor located at coordinates x ji that can
detect (y ji = 1) or not (y ji = 0) a target. In the sequel, we will
omit the dependence respect to j unless necessary.

We also consider a random deployment of sensor with
density ρs, and that each sensor applies the same binary de-
tection rule, not necessarily based on a LLR test.

The probability of a positive detection (Y = 1) in a sensor
located at coordinates x when a target is present at coordi-
nates xt ∈ D ′ is denoted as pd(xt ,x,α ), where α is the prob-
ability of false alarm (PFA) of the sensor when no target is
present. In other words, pd(xt ,x,α ) = Pr(Y = 1|Xt = xt ,X =
x) when the PFA of the detector is equal to α . pd(xt ,x,α ) has
the following properties:
1. pd(xt ,x,α ) ≥ α
2. pd(xt ,x,α ) = pd(‖xt − x‖2

2,α )
3. pd(xt ,x,α ) ≥ pd(xt ,x′,α ) ⇔ ‖xt − x‖2 ≤ ‖xt − x′‖2
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4. lim‖xt−x‖2→∞ pd(xt ,x,α ) = α
Given D , we define two hypothesis, H0 or null hypothesis

for the case when no target is present, and H1 or alternative
hypothesis for the case when a target is present.
• Under hypothesis H0, the joint pdf of Xt , X , and Y is

fXt ,X,Y |H0
(xt ,x,y|H0) = ρ ′ρ (α δ [y−1]+ (1−α )δ[y])

where ρ ′ = (
∫
D ′ dx)−1, ρ = (

∫
D dx)−1, and δ is the Kro-

necker function.
• Under hypothesis H1, the joint pdf of Xt , X , and Y is

fXt ,X ,Y |H1
(xt ,x,y|H1) = ρ ′ρ(pd(xt ,x,α )δ[y−1]

+ (1− pd(xt ,x,α ))δ[y])

We assume that samples in {(xi,yi) : i = 1, . . . , l, xi ∈
D ,yi ∈ {0,1}} are conditionally (under H0 or H1) indepen-
dents.

When necessary, we can assume the following parametric
approximation to pd , that we called the “spanish hat” model:

pd(xt ,x,α ) =
{

(1−β) if ‖xt − x‖2 < r0

α otherwise

where r0 is the range of the sensor. This model considers
a constant probability of missdetection when the target is
located inside the range of the sensor and a constant false
alarm probability outside the range of the sensor. This simple
model is provided to gain some insight into the performance
analysis.

3. HYPOTHESIS DETECTION PROBLEMS

The dependence respect to xt in the composite hypothesis
H1 is avoided by integrating out xt over D ′, leading to the
definition of a new function pd , p′d , as

p′d(D
′,x,α ) = ρ ′

∫
D ′

pd(xt ,x,α )dxt

being now the joint pdf of X and Y under H1

fX ,Y |H1
(x,y|H1) = ρ(p′d(D

′,x,α )δ[y−1]

+ (1− p′d(D
′,x,α ))δ[y])

Given {(xi,yi) : i = 1, . . . , l, xi ∈ D ,yi ∈ {0,1}}, the log-
likelihood ratio between both hypothesis can be computed as

λ =
l

∑
i=1

lnΓi

where

Γi =
p′d(D

′,xi,α )δ[yi −1]+ (1− p′d(D
′,xi,α ))δ[yi]

α δ [yi −1]+ (1−α )δ[yi]

=

{
1−p′d(D ′,xi,α )

1−α if yi = 0
p′d(D ′,xi,α )

α if yi = 1

Under Bayes criteria, the threshold τ is easily set as

τ = ln
π0(C10 −C00)
π1(C01 −C11)

and, under the NP criteria, the determination of the threshold
can be done using the asymptotic normality of λ when the
number of sensors is high, as in [5]. However, the analysis of
the performance of both tests (the mean probability of error
in the Bayes test and the power in the NP test) is hard to de-
termine analytically, and we will make use of large deviation
bounds to perform it.

Prior to proceed with the performance analysis, lets de-
termine the form that takes function p ′

d when using the
“spanish hat” approximation of pd . In order to simplify the
analysis, lets assume that the area D ′ ∈ R

2 is a circle of ra-
dius r′ centered on the origin, and we obtain

p′d(D
′,x,α ) =


(1−β) if ‖x‖2 ≤ r0 − r′

(1−β)A(x)+α (1−A(x)) if r0 − r′ < ‖x‖2 < r0 + r′

α otherwise

where

A(x) =
1

2πr′2
(
r2

0θ(x)− r2
0sinθ(x)+ r′2φ(x)sinφ(x)

)
and

θ(x) = 2arccos
(

r2
0 − r′2 +‖x‖2

2

2r0‖x‖2

)

φ(x) = 2arccos

(
r′2 − r2

0 +‖x‖2
2

2r′‖x‖2

)
that is represented in Figure 1 for r0 = 1, α = β = 0.1, and
different values of r ′. When necessary, function A can be
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Figure 1: Different p′
d functions.

linearly approximated by

A(x) =
1
2

(
r0 −‖x‖2

r′
+ 1

)
(1)

4. LARGE DEVIATION BOUNDS

When the number of sensor, l, tends to infinity, the probabil-
ity of error of both Bayes and NP tests can be bounded using
large deviation bounds in the form of error exponents [6, 7].
If εl is the probability of error (of some kind) obtained with
l observation, the error exponent is defined as

lim
l→∞

−1
l

lnεl
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In NP test, the best error exponent is given by the Stein’s
lemma, that applied to our problem says that for any α n ∈
(0,1)

lim
l→∞

−1
l

lnβl = D( fX ,Y |H0
‖ fX ,Y |H1

)

where D is the Kullback-Leibler (KL) divergence. We will
denote D( fX ,Y |H0

‖ fX,Y |H1
) as D(H0‖H1) for short.

Using the “spanish hat” approximation of pd with D and
D ′ being circles centered on the origin and radius of, respec-
tively, R and r′, and employing the linear approximation (1),
D(H0‖H1) is

D(H0‖H1) = −


H(α )+ ln
(

β
(

1−β
β

)α )
if R ≤ r0 − r′

H(α )+
F(R)−F (r0−r′)+(r0−r′)2 ln

(
β
(

1−β
β

)α )
R2 if r0 − r′ < R < r0 + r′

(r0+r′)2H(α )+F(r0+r′)−F(r0−r′)+(r0−r′)2 ln
(

β
(

1−β
β

)α )
R2 if R > r0 + r′

(2)

where H is the entropy function, and

F(r) = a
ln(k0r + k1)(k2

0r2 − k2
1)− (k0r− k1)2

k0
2 +

+(1−a)
(

ln(−k0r− (k1 −1))(k2
0r2 − (k1 −1)2)

k0
2 +

−(k0r− (k1 −1))2

2k0
2

)

being

k0 = − 1
2r′

(1−β −α )

k1 = α − k0(r0 + r′)

In Bayes tests (assuming that C10 −C00 = C01 −C11), the
best achievable error exponent is the Chernoff information,
C( fX ,Y |H1

, fX ,Y |H0
) or C(H1, H0) for short, defined as

C( fX ,Y |H1
, fX ,Y |H0

) = D( fX ,Y |s0
‖ fX,Y |H1

)

= D( fX ,Y |s0
‖ fX,Y |H0

) (3)

where

fX ,Y |s(x,y|H0) =

f s
X,Y |H1

(x,y|H1) f 1−s
X ,Y |H0

(x,y|H0)

∑
∫

f s
X,Y |H1

(x′,y|H1) f 1−s
X ,Y |H0

(x′,y|H0)dx′

and s0 the value of s such that (3) is satisfied.
The Chernoff information can also be obtained as minus

the minimum of the cumulant generating function (cgf) of
the log-likelihood ratio per sample under hypothesis H0 (or
H1), i.e.,

C(H1, H0) = −1
l

min
0≤s≤1

µλ ,0(s)

that in our problem takes the form

µλ ,0(s)=l ln
[∫

D
ρ
(

p′d(D
′,x,α )s

α s−1 +
(1− p′d(D

′,x,α ))s

(1−α )s−1

)
dx

]

Unfortunately, no analytical expression could be found
using the “spanish hat” model, even using the linear approx-
imation (1). However, numerical results will be presented in
the next section.

5. OPTIMIZATION OF THE TESTS

The sensors are assumed to be battery powered, and the wire-
less transmissions from sensors to the fusion center is the
most energy consuming operation [4]. For elongating the
life of the sensor network, a reasonable criteria is to read the
minimum number of sensors to achieve a probability of error
in the problem of detecting the target less or equal a given
arbitrarily small value, ε 1. Also, as the power-related quan-
tity that is assumed to be constant is the number of deployed
sensor per area unit, the above criteria must be transformed
to the minimum number of sensors per area unit.

For simplicity, lets consider the area D ∗ to be square with
side of length d. Lets consider also an overlapping partition
of D∗ using circular cells D ′ with radius r′, in such way that

D∗ is covered using
⌈

d√
2r′

⌉2
cells. Assuming independent

readings on each cell, and assuming that the number of read
sensor by cell, l, is large enough or, equivalently, that the
sensors are densely deployed, the number of read sensor to
achieve a probability of error less or equal to ε, l, is

l ≥ lnε
D

⌈
d√
2r′

⌉2

where D = D(H0‖H1) for NP tests, and C(H1, H0) for Bayes
tests. The number of read sensor per area unit to achieve a
probability of error less or equal to ε, lρ, is

lρ ≥ lnε
D/ρ

⌈
d√
2r′

⌉2

(4)

By minimizing the right side of (4), we want to answer the
following questions:
1. Given r′ and d, are they any optimum configuration of

the exploration area D?.
2. Given D and d, are they any optimum value of r ′?.

The analysis will be performed using the “spanish hat”
model for pd and circular regions D . Analytical solutions
will be given for NP test (using the linear approximation (1)),
and only numerical results will be provided for Bayes tests.

For NP tests, the minimum of (4) is equivalent to the
maximum of πR2D(H0‖H1), where D(H0‖H1) is as in (2).
πR2D(H0‖H1) is a non-decreasing function that achieves its
maximum at R = r0 + r′, as shown in Figure 2.a for specific
values of r0, r′, α and β , and we can conclude that the ex-
ploration area, D , must cover, at least, the range of the sen-
sor, having no penalty for exploring big areas (other than the
managing larger amount of data). Figure 2.b shown the nu-
merical evaluation of the exact function (without the linear
approximation (1)) that is indistinguishable from 2.a.

For Bayes tests, the minimum of (4) is equivalent to the
maximum of πR2C(H1, H0), whose numerical evaluation is
shown in Figure 3 for specific values of r0, r′, α and β . This
function achieves its maximum at a value of R between r0
and r0 + r′ that coincides approximately with the effective
range of function p ′

d , re defined as

re =

√∫
(p′d(D ′,x,α )−α )�x

π(p′d(D ′,x�,α )−α )

1For the NP tests, ε is the power of the test, and for Bayes tests, ε is the
mean probability of error.

799



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

R

D
(H

0||H
1)/

ρ

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

R

D
(H

0||H
1)/

ρ
(b)

Figure 2: πR2D(H0‖H1) as a function of R for the “spanish
hat” model of pd (a) using the linear approximation (1) and
(b) exact. r0 = 1, r′ = 0.5, α = β = 0.1.
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Figure 3: πR2C(H1, H0) as a function of R for the “spanish
hat” model of pd . r0 = 1, r′ = 0.5, α = β = 0.1.

This fact is maintained in extensive series of numerical sim-
ulations using different values of r0, r′, α and β .

These conclusions coincides with the results presented in
[5] for a fixed location of the target, taking now p ′

d the role
of pd in [5]. This coincidence is not surprising because p ′

d is
the convolution of pd and fXt (xt).

Now we will proceed to answer the question of how big
D ′ must be. In order to guarantee that intersection between
D ′ and the area inside the range of each sensor (for the value
of R previously obtained) is not empty, r ′ must be less or
equal to r0. For demonstrating that the optimum value of r ′
is equal to r0 we must show only that πR2D(H0‖H1) and
πR2C(H1, H0) are increasing functions of r ′. Taking into
account that R = r0 + r′ for NP tests and the expression of
D(H0‖H1) in (2) it is easy to show the increasing nature of
πR2D(H0‖H1). Figure 4.a shown an example of such func-
tion for specific values of r0, α and β .

The demonstration is not easy for Bayes tests due to the
nonexistence of analytic expression for C(H1, H0). However,
all the performed numerical evaluations exhibit this behavior,
being one of them the one that is shown in Figure 4.b.

6. CONCLUSIONS

In this paper we extend previous results on distributed detec-
tion from the known to the unknown target position. We pro-
pose to divide the problem into smaller composite hypoth-
esis tests, and we derived such tests for the Bayesian and
Neyman-Pearson case. The probability of error of both kind
of tests were analyzed using Stein’s lemma (NP test) and
Chernoff information (Bayes test), and a simple parametric
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Figure 4: πR2D(H0‖H1) (a), and πR2C(H1, H0) (b) as a
function of r′ for the “spanish hat” model of pd . r0 = 1,
α = β = 0.1, R = r0 + r′ in (a), and R = re in (b).

approximation to the detection function p d .
Using as a criteria of efficiency the minimum number of

read sensors per area unit to achieve a probability of error less
or equal that a given value, the analysis revealed two main
facts. The first is that given an area where the target could
be present, D ′, and given also the range of the detector, r0,
the area of exploration must cover, in the case of NP tests, at
least an area that results from extending D ′ in all directions
by a distance r0. In the case of Bayes tests, there exists an
optimum area that is, in general, contained in the minimum
area for NP test and whose definition depends only on D ′
and r0. Contrary to NP tests, in the Bayes test there exist a
efficiency penalty when exploring bigger areas.

The second fact is that D ′ must coincide with the area
inside the range of a single sensor. So, when exploring a
large area, this one must be partitioned using the pattern of
D ′. Note that D ′ defines the area of uncertainty about the
position of the target, being the exploration area associated
with the area of uncertainty always bigger.
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