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ABSTRACT

Particle filters are sequential Monte Carlo methods that
have recently gained popularity in solving various prob-
lems in communications and signal processing. These fil-
ters have been shown to outperform traditional filters in im-
portant practical scenarios. However, they are computation-
ally intensive and hence development of hardware for their
real time implementation is an important and challenging re-
search issue. In this paper we present some novel modifica-
tions applied to two particle filtering algorithms viz. Sam-
pling Importance Resampling Filters (SIRFs) and Gaussian
Particle Filters (GPFs) to make these filters suitable for im-
plementation. We evaluate the proposed algorithms with re-
spect to potential throughput and hardware resources. These
modifications allow implementation of parallel architectures
for these filters. Architectural parameters of proposed archi-
tectures for these filters are evaluated and compared.

1. INTRODUCTION

Particle filters (PFs) [1, 2] are used to perform filtering for
problems that can be described using dynamic state space
modeling [1]. In most practical scenarios, these models are
non-linear and the densities involved are non-Gaussian. Tra-
ditional filters like the Extended Kalman Filter are known to
perform poorly in such scenarios. The performance of PFs
on the other hand, is not affected by these conditions. PFs
are Bayesian in nature and their goal is to find an approxi-
mation to the posterior density of the states of interest (e.g.
position of a moving object in tracking, or transmitted sym-
bol in communications) based on observations corrupted by
additive noise which are inputs to the filter. This is done us-
ing the principle of Importance Sampling (IS) whereby, sam-
ples (particles) are drawn from a known density (Importance
Function (IF)) and assigned appropriate weights based on the
received observations using IS rules [1]. This weighted set of
samples represents the posterior density of the state and can
be used to find all kinds of estimates of the state (like min-
imum mean square error MMSE or maximum a posteriori
MAP). PF algorithms allow for recursive propagation of this
density as the observations become available. However, per-
formance of this scheme is affected by weight degeneracy
[2]. Because of this, after several sampling periods there are
only a few particles with significant weights while those of
the rest become negligible. This problem is solved by intro-
ducing resampling which discards particles with negligible
weights and replicates those with large weights while pre-
serving constant number of particles. These operations form
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the traditional PF algorithm known as the Sampling Impor-
tance Resampling Filter (SIRF). Recently, a new type of PF
known as Gaussian Particle Filter (GPF) has been introduced
[3]. GPF works by approximating the desired densities as
Gaussians, and calculating the estimates of the first two mo-
ments of these Gaussians using a particle based approach.
These estimates are propagated in time. GPFs do not suffer
from weight degeneracy and hence do not require standard
resampling.

PFs have been the focus of wide research recently and
immense literature can be found on their theory. Most of
these works recognize the complexity and computational in-
tensity of these filters, but there has not been much effort
directed towards the implementation of these filters in hard-
ware. In this paper, algorithmic transformations that lead to
increased concurrency and saving resources for both SIRF
and GPF are presented. Architectures for their implemen-
tation are proposed and evaluated based on their sampling
period, memory requirements, data exchange patterns and
complexity of sequential operations. In order to maximize
throughput, only spatial design with independent hardware
units for each operation is considered.

Often, in practical operations, a large number of particles
need to be used for computing estimates of the desired state.
As the number of particles increases, the input sampling pe-
riod and hence the speed of the PF is seriously affected. The
algorithms presented here were applied to the bearings only
tracking problem presented in [4]. Using 2000 particles on a
single state-of-the-art DSP, yielded speeds of up to SOOHz for
SIRF. Clearly, this speed would seriously limit the range of
applications for which the PF can be used for real time pro-
cessing. Hence for meeting speed requirements of real time
applications, it is necessary to have high throughput designs
with ability to process a larger number of particles in a given
time. Parallelizability is the key to high throughput design
for PFs, as this enables simultaneous processing of particles.
GPFs show great promise for parallel implementation. GPFs
have lower sampling periods, simple data exchange patterns,
and they do not require memories for storing particles. From
a theoretical viewpoint, the prior densities are used as IFs for
both the SIRFs and GPFs respectively since this allows for a
fair comparison of these filters.

2. PARALLEL ARCHITECTURAL MODEL

The common architecture for both SIRFs and GPFs consists
of multiple processing elements (PEs) simultaneously car-
rying out independent operations on particles and a central
unit (CU) performing data dependent sequential operations.
The operation of the CU is dependent on the result of the
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operation of the PEs and vice versa. Hence the PEs and the
CU cannot operate simultaneously. Once all the particles are
processed, the PEs send relevant data to the CU depending
on which algorithm is being implemented. The CU starts
operating after receiving all the data from the PEs while the
PEs remain idle during this CU operation time. Once the CU
completes its operation , the results are sent to the PEs and
the next recursion is started. The parallel model of PFs is
shown in Figure 1.

Figure 1: Architecture of the parallel PF with a CU and four
PEs.

3. ALGORITHMIC MODIFICATIONS FOR SIRF

Detailed description of the traditional SIRF algorithm can be
found in [1].

In one SIRF recursion at time instant », the following
operations are performed:

e Sampling step — Generation of new particles, in which

M particles xﬁ,m) for m = 1,...,M are drawn from an im-
(m)

portance function 71(x,) using the particles x, |

from the previous time instant.
e Importance step — Computation of the particle weights

propagated

W™ for m = 1, ...,M, and their normalization according to
wf,’"’ = Ws,m) /W,, where W, represents the sum of weights.

e Resampling step — drawing of M particles fc(nm)

the set xﬁ,m)
(m)

function a,

from

for m = 1,...,M according to a resampling

whose support is defined by the particles xﬁ,m).

Commonly af,’”) = wffn) form=1,...M.

We modify the traditional SIRF algorithm to improve
its parallel spatial implementation by avoiding normalization
and applying distributed resampling. Traditional algorithms
apply systematic resampling (SR) with normalized weights.
Normalization can be eliminated by using sum of weights in
the resampling step. A modified SR algorithm which works
with non-normalized weights is shown by Pseudocode 1. Us-
ing this algorithm M divisions during normalization are re-
placed with one division as shown in step 2. Here, N; is the
input number of particles, N, is the number of particles gen-
erated after resampling, and w,, is an array of non-normalized
weights from the importance step. In non-parallel implemen-
tation N; = N, = M. The output i, is an array of indexes,
which shows the addresses of the particles that are replicated.
The algorithm works by drawing a uniform random number
U from the support [0, %’:] and then updating it using step 10.
At the same time, the sum of the first & particle weights S is
calculated and compared with U. When S < U the last parti-
cle is discarded and the weight of the particle £+ 1 is added

to S. If S > U the particle & is replicated and the number of
replications is proportional to £ (Wg,k)N,, IW).

L. (in)=SR(N:,No, Wy, W)

2. Ag = VZ

3. Generate random number U ~ %[0, 4]
4. §=0,k=0

5. form=1:N;

6. while (S < U)

7. k=k+1

8. S= S+

9. end

10. U=U+4y

1. i =k

12. end

Pseudocode 1.  Systematic resampling with non-normalized
weights.

Propagation and weight calculation for different particles
are independent and each require M iterations for one PF re-
cursion. This allows for parallel implementation which is
based on the concept of loop level parallelism [5]. Resam-
pling, which is inherently sequential, has been modified in
order to allow for parallel implementation [6]. Resampling
is then performed concurrently in the PEs such that each PE,
after resampling, produces a certain number of particles pro-

portional to its sum of weights, Wn(k), of particles in that PE.
Resampling consists of three operations:

1. CU resampling which is a sequential operation in which

the CU first calculates the number of particles N that
each PE should produce after resampling based on its

sum of weights W,,(k) fork=1,...,K where K is the num-
ber of PEs.

2. Simultaneous execution of resampling in the PEs once
they get the numbers N®.If resampling is performed
based on Pseudocode 1, the input number of particles is
equal for all the PEs N; = M/K and the output number of
particles varies N, = N®*).

3. Data exchange in which the particles among PEs are ex-
changed in a way that PEs with the surplus send the par-
ticles to the PEs with lack of particles. This step is nec-
essary in order to assure that all the PEs have the same
number of particles before the next sampling period.

Using this modification, the time for resampling in par-
allel implementation is reduced K times in comparison with
the implementation in which resampling is performed only
by the CU. The average time for data exchange is reduced as
well. In parallel implementations, sample generation, weight
computation, and particle replication (item 2. above) are
mapped into the PEs, while the sequential operations such as
CU resampling and data exchange are mapped into the CU.

4. ALGORITHMIC MODIFICATIONS FOR GPF

The traditional GPF algorithm can be found in [3]. In this
section, the GPF algorithm is modified to allow for overlap-
ping of operations and implementation without storing par-
ticles into memories. If the IF is the prior, the GPF can
be implemented using four steps: (a) drawing conditioning
particles x,,_; from the approximated filtering density of the
previous recursion, (b) generating new particles x,, (c) cal-
culating weights and normalizing them, and (d) computing
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the mean U, and covariance ¥, of the filtering density. Steps
(b) and (c) are same as those in SIR. These four steps can be
executed using four loops each having M iterations. To fuse
these loops and pipeline the operation of GPF, it is necessary
to modify the algorithm by eliminating dependencies. These
modifications are shown by Pseudocode 2.

The modified algorithm at time instant » combines into
one loop the above mentioned step (a), (b) and parts of steps
(c) and (d) (steps 1 to 4 in Pseudocode 2). The dependence
that exists in step (c) and (d) (the calculation of mean and co-
variance requires normalized weights) is eliminated by cal-
culating the mean and the variance elements with the non-
normalized weights (step 4 in Pseudocode 2) and appropri-
ately scaling the elements by the sum of weights at the end
of M iterations (step 6). In order to calculate the covariance
coefficients, the mean should be known in step (d). How-
ever, a simple transformation of this step is possible so that
the mean can also be added at the end of M iterations (step
7). After calculating the covariance matrix, it is decomposed
to C,,_ before starting the next recursion.

In these filters, only the mean and variance of the
densities are propagated. Since the particles themselves are
not propagated, they do not need to be stored in memories.
Hence in Pseudocode 2, the superscript (m) is not shown
for the particle weights and states as is done in traditional
algorithms. In a parallel implementation with K PEs, where
each PE processes M/K particles, steps 1 to 4 are mapped
in the PEs for parallel implementation since there are no
dependencies between these steps. Steps 5-8 are mapped to
the CU. In the pseudocode, quantities with superscript (k)
represent the partial results of operations of the k—th PE.
Step 5 is necessary because the partial sum of the weights,
the mean and covariance matrix have to be collected and
updated from all the PEs.

Purpose:  GPF iteration at time instance n» where n > 0.
Input: The observation y, and previous estimates
Uy—1 and matrix C,;, s.t. 33, | = Cn,lc,ll
Setup: Mean [y and covariance matrix 3,
based on prior information, sum of the
weights /¥ = 0, initial mean pf =0
and covariance 3¢ = 0
Method:
PE operation
form=1toM
1. Draw a conditioning particle from A (x,_1; Uy—1, Xn—1)

to obtain x,,_1.
2. Draw a sample from p(x, | X, = X,_1)

to obtain x,,.
3. (a) Calculate a weight by w, = p(ynu|xy).

(b) Update the current sum of weights by W = W +w,.
4.  Update the current mean and covariance by

(@) Hy]f = IJ,I,‘ + WnXy

(b) K = 3k 4, %, (%)

end
CU operation
fork=1to K

5. Collect and update sum of weights, mean and covariance
(a) W, = W, + Wk,
(b) k= o + pif
(C) =%+ Eﬁ

end

6.  Scale mean and covariance
(@) Un = Un/ Wy
(b) X, =%, /W,

7. Update the covariance estimate 3, = X, — , ()"

8. The Cholesky decomposition of the matrix 3, in order
to obtain C,,.

Pseudocode 2. GPF algorithm after loop fusion is applied.

5. ARCHITECTURAL PARAMETERS
5.1 Sampling period

Output Cale

Cale . & Update sum of weights

Resample

Data Exchange

L, M/K + L, Leus(K) | M/K + Ly

Laex (M)

OM/K + Lpg

(a) Timing for SIR

Draw Conditioning particles |

Draw particles |

Calculated Update Sum of weights and states

Collect partal sums

Caleulate mean &  cov

Cholesky Decomposition

MK + Ly L, Ls Le

M/K + Lpg ¢

(b) Timing for GPF.

Figure 2: Latency and timing of various steps of particle filter
with K PEs (a) SIR (b) GPF

The timing diagrams in Figure 2 show the latencies of
various operations in the SIR and GPF filters. In the SIR filter
with resamapling distributed to the PEs, the latency of pro-
cessing one input observation will be % + Lpg + Lyex (M),
where %’[ + Lpg is the latency of processing in the PEs. This
is because each PE processes M/K particles, and it gener-
ates new particles and computes their weights. After the sum
of weights of each PE is obtained, the CU takes these sums
and computes the number of particles that each PE must
produce after resampling [6]. The latency for this CU re-
sampling is a function of the number of PEs represented by
Leyy(K). Once this processing is done, another M/K cy-
cles are needed to perform resampling in each PE. The term
Lpg = zle Li+ Lcyy(K) accounts for the start up latencies of
each block and is inherent to any pipelined feed forward data
path. The Ly, (M) represents the latency of data exchange
after particle allocation, which is done to redistribute parti-
cles after resampling. Since data exchange is done through
the CU in SIR, increasing the number of particles will re-
duce the processing speed because the maximum number of
particles that is transferred is a function of M.

The net latency of processing is %’[ + Lpg +C for the GPF.

The latency Lpg = 21-3:1 L; accounts for the start up latencies
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of the various blocks inside the PEs. The processing time for
the CU in the GPF is constant C = 3¢ _, L; and it accounts for
the latency of both the CU and the data exchange between
the PEs and the CU.

In Figure 3 the sampling periods of GPFs and SIRs for
varying number of particles and PEs are plotted. It can be
clearly seen that for a large number of particles and PEs, the
GPFs are faster than the SIRFs. Also, the latency Ly, for
SIRFs is not taken into account. With increasing the number
of particles, the latency of the PEs in GPFs becomes domi-
nant while the latency of the CU and that of data exchange
remains the same. On the contrary, in SIRFs, as particles in-
crease, the latency of the PEs increases and that of the CU
also increases. The results are based on component delays
on a Field Programmable Gate Array (FPGA) platform.

1000

—+—SIR (M=500)

—=—SIR (M=5000)

—a—SIR (M=50000)
GPF (M=500)
GPF (M=5000)
GPF (M=50000)

100 \

Sample period (us)

Figure 3: Sampling period vs. number of PEs for SIR and
GPF for different number of particles.

5.2 Memory requirements

As the model dimension Ny increases, so do the number of
memories used for storing particles and the number of par-
ticles necessary for proper functioning of the PFs as shown
in [7]. SIRFs require memories for storing particles, their
weights and indexes after resampling, so that, the total num-
ber of required memory words is (N; +2) - M. GPFs can
be implemented without storing samples and their weights
between successive recursion which is one of their main ad-
vantages. This greatly reduces the memory requirement of
the design. Due to the need to store particles in memory, the
number of particles that can be used in SIRFs is limited by
the size of the memory. In GPFs, however, any number of
particles can be used.

5.3 Data exchange patterns

Data exchange patterns are evaluated based on the number of
data transferred and the type and direction of data exchange.
In GPFs, from Pseudocode 2, we see that the CU acquires
K- (Ng+1)-(Ng/2+ 1) coefficients of ¥ and ¥ for k =
1,...,K and sends back to PEs (Ny+ 1) - Ny /2 coefficients of
U, and C,,. The number of data exchanged for these filters is
fixed, the direction is known before run-time and the type is
static.

For SIRFs, we consider that data exchange after resam-
pling is performed through the CU. PEs with surplus of parti-
cles after resampling (N* > M/K) donate their exceess par-
ticles to the PEs with lack of particles (N* < M/K). The
direction of the data exchange and the amount of particles

transferred between the CU and each PE is not known be-
fore run-time. It also changes after each sampling period
because the distribution of the weights changes. In the worst
case, the PE with lack of particles receives all the M/K new
particles and the maximum number of particles exchanged
through the interconnections is (K — 1) - M/K. So, resam-
pling introduces non-deterministic and complicated data ex-
change patterns between the PEs and the CU.

6. CONCLUSION

In this paper, algorithmic modifications of SIRFs and GPFs
suitable for parallel hardware implementation are presented.
High speed PFs can be realized in hardware using these mod-
ified algorithms. This will enable use of PFs in real time
practical scenarios where they currently cannot be used. We
also analyzed how these modifications affect the architectural
parameters of PFs, mainly their speed and resources. To sum-
marize, the GPF has some attractive properties which are the
result of algorithmic transformations:

1. The data exchange pattern in GPFs with multiple PEs are
simple and deterministic. On the other hand, resampling
in SIRFs introduces non-deterministic and complicated
data exchange patterns between the PEs and the CU.

2. GPFs can be implemented without storing particles be-
tween successive recursions. This greatly reduces the
memory requirement in their design as opposed to that
of traditional PFs.

3. The GPFs also have CUs whose operations are sequential
with data dependencies. The time for the CU operations,
however, is fixed and independent of the number of used
particles.
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