ALGORITHMIC MODIFICATION OF PARTICLE FILTERS FOR HARDWARE
IMPLEMENTATION

Miodrag Boli¢, Akshay Athalye, Petar M. Djuri¢, and Sangjin Hong

Department of Electrical and Computer Engineering
Stony Brook University
Stony Brook, NY, 11794-2350
mbolic, athalye, djuric, snjhong@ece.sunysb.edu

ABSTRACT

Particle filters are sequential Monte Carlo methods that
have recently gained popularity in solving various prob-
lems in communications and signal processing. These fil-
ters have been shown to outperform traditional filters in im-
portant practical scenarios. However, they are computation-
ally intensive and hence development of hardware for their
real time implementation is an important and challenging re-
search issue. In this paper we present some novel modifica-
tions applied to two particle filtering algorithms viz. Sam-
pling Importance Resampling Filters (SIRFs) and Gaussian
Particle Filters (GPFs) to make these filters suitable for im-
plementation. We evaluate the proposed algorithms with re-
spect to potential throughput and hardware resources. These
modifications allow implementation of parallel architectures
for these filters. Architectural parameters of proposed archi-
tectures for these filters are evaluated and compared.

1. INTRODUCTION

Particle filters (PFs) [1, 2] are used to perform filtering for
problems that can be described using dynamic state space
modeling [1]. In most practical scenarios, these models are
non-linear and the densities involved are non-Gaussian. Tra-
ditional filters like the Extended Kalman Filter are known to
perform poorly in such scenarios. The performance of PFs
on the other hand, is not affected by these conditions. PFs
are Bayesian in nature and their goal is to find an approxi-
mation to the posterior density of the states of interest (e.g.
position of a moving object in tracking, or transmitted sym-
bol in communications) based on observations corrupted by
additive noise which are inputs to the filter. This is done us-
ing the principle of Importance Sampling (IS) whereby, sam-
ples (particles) are drawn from a known density (Importance
Function (IF)) and assigned appropriate weights based on the
received observations using IS rules [1]. This weighted set of
samples represents the posterior density of the state and can
be used to find all kinds of estimates of the state (like min-
imum mean square error MMSE or maximum a posteriori
MAP). PF algorithms allow for recursive propagation of this
density as the observations become available. However, per-
formance of this scheme is affected by weight degeneracy
[2]. Because of this, after several sampling periods there are
only a few particles with significant weights while those of
the rest become negligible. This problem is solved by intro-
ducing resampling which discards particles with negligible
weights and replicates those with large weights while pre-
serving constant number of particles. These operations form

This work has been supported by the NSF under Award CCR-0220011.

the traditional PF algorithm known as the Sampling Impor-
tance Resampling Filter (SIRF). Recently, a new type of PF
known as Gaussian Particle Filter (GPF) has been introduced
[3]. GPF works by approximating the desired densities as
Gaussians, and calculating the estimates of the first two mo-
ments of these Gaussians using a particle based approach.
These estimates are propagated in time. GPFs do not suffer
from weight degeneracy and hence do not require standard
resampling.

PFs have been the focus of wide research recently and
immense literature can be found on their theory. Most of
these works recognize the complexity and computational in-
tensity of these filters, but there has not been much effort
directed towards the implementation of these filters in hard-
ware. In this paper, algorithmic transformations that lead to
increased concurrency and saving resources for both SIRF
and GPF are presented. Architectures for their implemen-
tation are proposed and evaluated based on their sampling
period, memory requirements, data exchange patterns and
complexity of sequential operations. In order to maximize
throughput, only spatial design with independent hardware
units for each operation is considered.

Often, in practical operations, a large number of particles
need to be used for computing estimates of the desired state.
As the number of particles increases, the input sampling pe-
riod and hence the speed of the PF is seriously affected. The
algorithms presented here were applied to the bearings only
tracking problem presented in [4]. Using 2000 particles on a
single state-of-the-art DSP, yielded speeds of up to SOOHz for
SIRF. Clearly, this speed would seriously limit the range of
applications for which the PF can be used for real time pro-
cessing. Hence for meeting speed requirements of real time
applications, it is necessary to have high throughput designs
with ability to process a larger number of particles in a given
time. Parallelizability is the key to high throughput design
for PFs, as this enables simultaneous processing of particles.
GPFs show great promise for parallel implementation. GPFs
have lower sampling periods, simple data exchange patterns,
and they do not require memories for storing particles. From
a theoretical viewpoint, the prior densities are used as IFs for
both the SIRFs and GPFs respectively since this allows for a
fair comparison of these filters.

2. PARALLEL ARCHITECTURAL MODEL

The common architecture for both SIRFs and GPFs consists
of multiple processing elements (PEs) simultaneously car-
rying out independent operations on particles and a central
unit (CU) performing data dependent sequential operations.
The operation of the CU is dependent on the result of the

1641

operation of the PEs and vice versa. Hence the PEs and the
CU cannot operate simultaneously. Once all the particles are
processed, the PEs send relevant data to the CU depending
on which algorithm is being implemented. The CU starts
operating after receiving all the data from the PEs while the
PEs remain idle during this CU operation time. Once the CU
completes its operation , the results are sent to the PEs and
the next recursion is started. The parallel model of PFs is
shown in Figure 1.

Figure 1: Architecture of the parallel PF with a CU and four
PEs.

3. ALGORITHMIC MODIFICATIONS FOR SIRF

Detailed description of the traditional SIRF algorithm can be
found in [1].

In one SIRF recursion at time instant », the following
operations are performed:

e Sampling step — Generation of new particles, in which

M particles xﬁ,m) for m = 1,...,M are drawn from an im-
(m)

portance function 71(x,) using the particles x, |

from the previous time instant.
e Importance step — Computation of the particle weights

propagated

W™ for m = 1, ...,M, and their normalization according to
wf,’"’ = Ws,m) /W,, where W, represents the sum of weights.

e Resampling step — drawing of M particles fc(nm)

the set xﬁ,m)
(m)

function a,

from

for m = 1,...,M according to a resampling

whose support is defined by the particles xﬁ,m).

Commonly af,’”) = wffn) form=1,...M.

We modify the traditional SIRF algorithm to improve
its parallel spatial implementation by avoiding normalization
and applying distributed resampling. Traditional algorithms
apply systematic resampling (SR) with normalized weights.
Normalization can be eliminated by using sum of weights in
the resampling step. A modified SR algorithm which works
with non-normalized weights is shown by Pseudocode 1. Us-
ing this algorithm M divisions during normalization are re-
placed with one division as shown in step 2. Here, N; is the
input number of particles, N, is the number of particles gen-
erated after resampling, and w,, is an array of non-normalized
weights from the importance step. In non-parallel implemen-
tation N; = N, = M. The output i, is an array of indexes,
which shows the addresses of the particles that are replicated.
The algorithm works by drawing a uniform random number
U from the support [0, %’:] and then updating it using step 10.
At the same time, the sum of the first & particle weights S is
calculated and compared with U. When S < U the last parti-
cle is discarded and the weight of the particle £+ 1 is added

to S. If S > U the particle & is replicated and the number of
replications is proportional to £ (Wg,k)N,, IW).

L. (in)=SR(N:,No, Wy, W)

2. Ag = VZ

3. Generate random number U ~ %[0, 4]
4. §=0,k=0

5. form=1:N;

6. while (S < U)

7. k=k+1

8. S= S+

9. end

10. U=U+4y

1. i =k

12. end

Pseudocode 1. Systematic resampling with non-normalized
weights.

Propagation and weight calculation for different particles
are independent and each require M iterations for one PF re-
cursion. This allows for parallel implementation which is
based on the concept of loop level parallelism [5]. Resam-
pling, which is inherently sequential, has been modified in
order to allow for parallel implementation [6]. Resampling
is then performed concurrently in the PEs such that each PE,
after resampling, produces a certain number of particles pro-

portional to its sum of weights, Wn(k), of particles in that PE.
Resampling consists of three operations:

1. CU resampling which is a sequential operation in which

the CU first calculates the number of particles N that
each PE should produce after resampling based on its

sum of weights W,,(k) fork=1,...,K where K is the num-
ber of PEs.

2. Simultaneous execution of resampling in the PEs once
they get the numbers N®.If resampling is performed
based on Pseudocode 1, the input number of particles is
equal for all the PEs N; = M/K and the output number of
particles varies N, = N®*).

3. Data exchange in which the particles among PEs are ex-
changed in a way that PEs with the surplus send the par-
ticles to the PEs with lack of particles. This step is nec-
essary in order to assure that all the PEs have the same
number of particles before the next sampling period.

Using this modification, the time for resampling in par-
allel implementation is reduced K times in comparison with
the implementation in which resampling is performed only
by the CU. The average time for data exchange is reduced as
well. In parallel implementations, sample generation, weight
computation, and particle replication (item 2. above) are
mapped into the PEs, while the sequential operations such as
CU resampling and data exchange are mapped into the CU.

4. ALGORITHMIC MODIFICATIONS FOR GPF

The traditional GPF algorithm can be found in [3]. In this
section, the GPF algorithm is modified to allow for overlap-
ping of operations and implementation without storing par-
ticles into memories. If the IF is the prior, the GPF can
be implemented using four steps: (a) drawing conditioning
particles x,,_; from the approximated filtering density of the
previous recursion, (b) generating new particles x,, (c) cal-
culating weights and normalizing them, and (d) computing

1642

the mean U, and covariance ¥, of the filtering density. Steps
(b) and (c) are same as those in SIR. These four steps can be
executed using four loops each having M iterations. To fuse
these loops and pipeline the operation of GPF, it is necessary
to modify the algorithm by eliminating dependencies. These
modifications are shown by Pseudocode 2.

The modified algorithm at time instant » combines into
one loop the above mentioned step (a), (b) and parts of steps
(c) and (d) (steps 1 to 4 in Pseudocode 2). The dependence
that exists in step (c) and (d) (the calculation of mean and co-
variance requires normalized weights) is eliminated by cal-
culating the mean and the variance elements with the non-
normalized weights (step 4 in Pseudocode 2) and appropri-
ately scaling the elements by the sum of weights at the end
of M iterations (step 6). In order to calculate the covariance
coefficients, the mean should be known in step (d). How-
ever, a simple transformation of this step is possible so that
the mean can also be added at the end of M iterations (step
7). After calculating the covariance matrix, it is decomposed
to C,,_ before starting the next recursion.

In these filters, only the mean and variance of the
densities are propagated. Since the particles themselves are
not propagated, they do not need to be stored in memories.
Hence in Pseudocode 2, the superscript (m) is not shown
for the particle weights and states as is done in traditional
algorithms. In a parallel implementation with K PEs, where
each PE processes M/K particles, steps 1 to 4 are mapped
in the PEs for parallel implementation since there are no
dependencies between these steps. Steps 5-8 are mapped to
the CU. In the pseudocode, quantities with superscript (k)
represent the partial results of operations of the k—th PE.
Step 5 is necessary because the partial sum of the weights,
the mean and covariance matrix have to be collected and
updated from all the PEs.

Purpose: GPF iteration at time instance n» where n > 0.
Input: The observation y, and previous estimates
Uy—1 and matrix C,;, s.t. 33, | = Cn,lc,ll
Setup: Mean [y and covariance matrix 3,
based on prior information, sum of the
weights /¥ = 0, initial mean pf =0
and covariance 3¢ = 0
Method:
PE operation
form=1toM
1. Draw a conditioning particle from A (x,_1; Uy—1, Xn—1)

to obtain x,,_1.
2. Draw a sample from p(x, | X, = X,_1)

to obtain x,,.
3. (a) Calculate a weight by w, = p(ynu|xy).

(b) Update the current sum of weights by W = W +w,.
4. Update the current mean and covariance by

(@) Hy]f = IJ,I,‘ + WnXy

(b) K = 3k 4, %, (%)

end
CU operation
fork=1to K

5. Collect and update sum of weights, mean and covariance
(a) W, = W, + Wk,
(b) k= o + pif
(C) =%+ Eﬁ

end

6. Scale mean and covariance
(@) Un = Un/ Wy
(b) X, =%, /W,

7. Update the covariance estimate 3, = X, — , ()"

8. The Cholesky decomposition of the matrix 3, in order
to obtain C,,.

Pseudocode 2. GPF algorithm after loop fusion is applied.

5. ARCHITECTURAL PARAMETERS
5.1 Sampling period

Output Cale

Cale . & Update sum of weights

Resample

Data Exchange

L, M/K + L, Leus(K) | M/K + Ly

Laex (M)

OM/K + Lpg

(a) Timing for SIR

Draw Conditioning particles |

Draw particles |

Calculated Update Sum of weights and states

Collect partal sums

Caleulate mean & cov

Cholesky Decomposition

MK + Ly L, Ls Le

M/K + Lpg ¢

(b) Timing for GPF.

Figure 2: Latency and timing of various steps of particle filter
with K PEs (a) SIR (b) GPF

The timing diagrams in Figure 2 show the latencies of
various operations in the SIR and GPF filters. In the SIR filter
with resamapling distributed to the PEs, the latency of pro-
cessing one input observation will be % + Lpg + Lyex (M),
where %’[+ Lpg is the latency of processing in the PEs. This
is because each PE processes M/K particles, and it gener-
ates new particles and computes their weights. After the sum
of weights of each PE is obtained, the CU takes these sums
and computes the number of particles that each PE must
produce after resampling [6]. The latency for this CU re-
sampling is a function of the number of PEs represented by
Leyy(K). Once this processing is done, another M/K cy-
cles are needed to perform resampling in each PE. The term
Lpg = zle Li+ Lcyy(K) accounts for the start up latencies of
each block and is inherent to any pipelined feed forward data
path. The Ly, (M) represents the latency of data exchange
after particle allocation, which is done to redistribute parti-
cles after resampling. Since data exchange is done through
the CU in SIR, increasing the number of particles will re-
duce the processing speed because the maximum number of
particles that is transferred is a function of M.

The net latency of processing is %’[+ Lpg +C for the GPF.

The latency Lpg = 21-3:1 L; accounts for the start up latencies

1643

of the various blocks inside the PEs. The processing time for
the CU in the GPF is constant C = 3¢ _, L; and it accounts for
the latency of both the CU and the data exchange between
the PEs and the CU.

In Figure 3 the sampling periods of GPFs and SIRs for
varying number of particles and PEs are plotted. It can be
clearly seen that for a large number of particles and PEs, the
GPFs are faster than the SIRFs. Also, the latency Ly, for
SIRFs is not taken into account. With increasing the number
of particles, the latency of the PEs in GPFs becomes domi-
nant while the latency of the CU and that of data exchange
remains the same. On the contrary, in SIRFs, as particles in-
crease, the latency of the PEs increases and that of the CU
also increases. The results are based on component delays
on a Field Programmable Gate Array (FPGA) platform.

1000

—+—SIR (M=500)

—=—SIR (M=5000)

—a—SIR (M=50000)
GPF (M=500)
GPF (M=5000)
GPF (M=50000)

100 \

Sample period (us)

Figure 3: Sampling period vs. number of PEs for SIR and
GPF for different number of particles.

5.2 Memory requirements

As the model dimension Ny increases, so do the number of
memories used for storing particles and the number of par-
ticles necessary for proper functioning of the PFs as shown
in [7]. SIRFs require memories for storing particles, their
weights and indexes after resampling, so that, the total num-
ber of required memory words is (N; +2) - M. GPFs can
be implemented without storing samples and their weights
between successive recursion which is one of their main ad-
vantages. This greatly reduces the memory requirement of
the design. Due to the need to store particles in memory, the
number of particles that can be used in SIRFs is limited by
the size of the memory. In GPFs, however, any number of
particles can be used.

5.3 Data exchange patterns

Data exchange patterns are evaluated based on the number of
data transferred and the type and direction of data exchange.
In GPFs, from Pseudocode 2, we see that the CU acquires
K- (Ng+1)-(Ng/2+ 1) coefficients of ¥ and ¥ for k =
1,...,K and sends back to PEs (Ny+ 1) - Ny /2 coefficients of
U, and C,,. The number of data exchanged for these filters is
fixed, the direction is known before run-time and the type is
static.

For SIRFs, we consider that data exchange after resam-
pling is performed through the CU. PEs with surplus of parti-
cles after resampling (N* > M/K) donate their exceess par-
ticles to the PEs with lack of particles (N* < M/K). The
direction of the data exchange and the amount of particles

transferred between the CU and each PE is not known be-
fore run-time. It also changes after each sampling period
because the distribution of the weights changes. In the worst
case, the PE with lack of particles receives all the M/K new
particles and the maximum number of particles exchanged
through the interconnections is (K — 1) - M/K. So, resam-
pling introduces non-deterministic and complicated data ex-
change patterns between the PEs and the CU.

6. CONCLUSION

In this paper, algorithmic modifications of SIRFs and GPFs
suitable for parallel hardware implementation are presented.
High speed PFs can be realized in hardware using these mod-
ified algorithms. This will enable use of PFs in real time
practical scenarios where they currently cannot be used. We
also analyzed how these modifications affect the architectural
parameters of PFs, mainly their speed and resources. To sum-
marize, the GPF has some attractive properties which are the
result of algorithmic transformations:

1. The data exchange pattern in GPFs with multiple PEs are
simple and deterministic. On the other hand, resampling
in SIRFs introduces non-deterministic and complicated
data exchange patterns between the PEs and the CU.

2. GPFs can be implemented without storing particles be-
tween successive recursions. This greatly reduces the
memory requirement in their design as opposed to that
of traditional PFs.

3. The GPFs also have CUs whose operations are sequential
with data dependencies. The time for the CU operations,
however, is fixed and independent of the number of used
particles.

REFERENCES
[1

[a—

A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential
Monte Carlo methods for Bayesian filtering,” Statistics
and Computing, pp. 197-208, 2000.

[2] A. Doucet, N. de Feritas, and N. Gordon, Eds., Sequen-
tial Monte Carlo Mehods in Practice, Springer Verlag,
New York, 2001.

[3] J. H. Kotecha and P. M. Djuri¢, “Gaussian particle filter-
ing,” IEEE Transactions on Signal Processing, vol. 51,
no. 10, pp. 2592-2601, Oct 2003.

[4] N.J. Gordon, D.J. Salmond, and A. F. M. Smith, “Novel
approach to non linear/non Gaussian Bayesian state esti-
mation,” [EEE Proceedings-F, vol. 140, no. 2, pp. 107—
113, April 1993.

[5] J. Henessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, third edi-
tion, 2003.

[6] M. Boli¢, P. M. Djuri¢, and S. Hong, “Resampling algo-
rithms and architectures for distributed particle filters,”
Submitted to IEEE Transactions on Signal Processing.

[7] F. Daum and J. Huang, “Curse of dimensionality and
particle filters,” in Fifth ONR/GTRI Workshop on Target
Tracking and Sensor Fusion, Newport, RI, June 2002.

1644

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Miodrag Bolic
	Akshay Athalye
	Petar Djuric
	Sangjin Hong

