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ABSTRACT

In this paper, we present fast stochastic simulation methods
for the class of first order chemical reactions. The meth-
ods are based on the exact distributions for the number of
molecules or their Gaussian approximations. Furthermore,
using the adopted models, we develop parameter estimation
methods for the reaction rates. Although we only discuss two
basic reactions, the single channel and reversible first order
reactions, the obtained results can be applied to more com-
plex cases.

1. INTRODUCTION

The traditional macroscopic approach to kinetics analysis
of enzymatically catalyzed reactions, based on the seminal
work of Michaelis and Menten [13], assumes uniform and
homogeneous concentrations of reactants and products [3].
Biological systems, such as a cell, however, have low num-
bers of certain molecules. Small fluctuations become here
important [2, 11, 14]. Recent research on reactions inside the
cell has relinquished the macroscopic approach and started
to model the reactions in a mesoscopic, stochastic way [1].
Indeed, chemical reactions occur as discrete events as a re-
sult of molecular collisions that cannot be predicted with
certainty. These events are modeled by stochastic processes
with the objective to predict the time evolution of the reac-
tions of interest.

The motivation for our research lies in the simulation and
parameter estimation of enzyme reactions in lung tissues. It
is becoming increasingly evident [9] that macroscopic, de-
terministic methods fail to explain proteinase-catalyzed de-
structions of connective lung tissue by inflammatory cells.
The actual molecular events are better described by stochas-
tic mathematical models.

There are two main approaches for the stochastic study of
chemical reactions: the first obtains the distribution function
of the number of molecules using the master equation [8, 12,
17] and the second relies on Monte Carlo simulation meth-
ods [4, 10, 16].

In 1976, Gillespie published his stochastic simulation al-
gorithm (SSA), which is a Monte Carlo method for numeri-
cally computing the time evolution of a chemical system [4].
The fundamental distribution function for SSA for the time
interval between two reactions is a time varying exponential
distribution, whose parameter depends on the current num-
ber of reactant molecules in the system and the reaction rate
parameter. We use SSA in Section 3.3 for the simulation of

data to test our estimator for the reversible reaction rate pa-
rameters.

The simulation of reactions by SSA can become very
slow since every single event is simulated. This is espe-
cially the case when the number of molecules in the system
is large, and there are several reactions that can occur at any
time. Therefore, Gillespie introduced a faster, but approx-
imate method, the τ-leap method, where bigger time leaps
are taken so that more than one reaction takes place per sim-
ulation step [5, 6, 15]. However, the time steps should still be
rather small for a good approximation.

In this paper we discuss simulation methods that use big
time steps and are still very accurate. This is possible be-
cause we stay closer to the true distributions than in the τ-
leap method. We only deal with two elementary reactions:
the single channel first order reaction and the reversible first
order reaction. However, our results are applicable to more
complex reactions. Often, reactions or a set of chemical reac-
tions that seem to be complex at first sight, can be simplified.
A second order reaction where one of the reactants is much
more abundant than the other, for example, can be approx-
imated by a first order reaction. Or, if one reaction is slow
compared to other reactions, only the slow one is important.
(See [18] for an enzyme-substrate reaction where these sim-
plifications were applied successfully.) Furthermore, we first
want to study the stochastic properties of basic reactions so
that we can combine them later.

The structure of the paper is as follows. In Section 2 we
discuss the single channel first order reaction and in Section 3
the reversible first order reaction. For both cases, the distri-
bution of the number of molecules is given, a simulation pro-
cedure based on the distribution or its Gaussian approxima-
tion is discussed and we show how the reaction parameters
can be estimated from measurements. Finally, in Section 4
we give some concluding remarks.

2. THE SINGLE CHANNEL FIRST ORDER
REACTION

In this section, we study the single channel first order reac-
tion in a closed system. It is usually represented by the fol-

lowing expression: A
k−→ B, where k is the reaction parameter.

2.1 Distribution function

Let XA(t) be the number of A molecules at time t and the ini-
tial number of A molecules be denoted by a0 = XA(0). Then,
the number of reactions happening in this closed system in
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the interval [0, t], denoted by M(t), is equal to a0 − XA(t).
Since M(t) is a pure birth process, one can deduce that
the number of reactions in [0, t] has a binomial distribution
(a0,1− e−kt) (this can also be obtained via the master equa-
tion):

pm(t) =

(

a0

m

)

e−(a0−m)kt(1− e−kt)m
, (1)

where t ≥ 0 and m = 0, . . . ,a0. As is well-known (see
e.g. [7]), for large a0, the binomial distribution can be ap-
proximated by a discretized normal distribution with the
same mean and variance as the binomial distribution, which
is very useful in the simulation of the reaction (see further).
The mean and variance for M(t) are given as E(M(t)) =
a0(1−e−kt) and Var(M(t)) = a0e−kt(1−e−kt), respectively.
The Gaussian approximation for (1) is then equal to

pm(t)≈ 1
D

1√
2πσ 2

e−
(m−µ)2

2σ2
a0

∑
i=0

δ (m− i) , (2)

where






















D =
a0

∑
i=0

1√
2πσ 2

e−
(i−µ)2

2σ2
,

µ = a0(1− e−kt) ,

σ 2 = a0e−kt(1− e−kt) .

(3)

2.2 Simulation

To generate a series of samples XA(ti) and XB(ti) at time
t0, . . . , tN with initial number of A and B molecules equal to
a0 and b0, respectively, we use the following procedure:
1. XA(t0) = a0
2. for i = 1 to N

• substitute a0 in (2) and (3) (or in (1) for an exact sim-
ulation) with XA(ti−1)

• draw a sample m from (2) (or from (1) for an exact
simulation) with t = ti− ti−1

• XA(ti) = XA(ti−1)−m.
The number of B molecules at t0, . . . , tN is equal to XB(ti) =
a0 +b0−XA(ti) for i = 0, . . . ,N.

Drawing samples directly from the probability mass
function (1) constitutes an exact, but possibly very slow
method (when the number of molecules is large), while using
the truncated Gaussian distribution produces a fast approxi-
mation.

2.3 Parameter estimation

Assume that N + 1 measurements XA(ti) of the number of
reactant molecules A at equidistant time points, t0, t1, . . . ,
tN , where ti+1− ti = τ , are given. For simplicity, we assume
that XB(t0) = 0. We want to estimate the reaction parameter
k from these measurements. Based on the exact distribution
of M(t) given in (1), the likelihood function of the unknown
parameter k can be written as

p(XA(t0), . . . ,XA(tN);k) =

N−1

∏
i=0

(

XA(ti)
mi

)

e−(XA(ti)−mi)kτ(1− e−kτ)mi
,

where mi is the number of product molecules produced in
[ti, ti+1]. They can be computed from the data as mi =
XA(ti)−XA(ti+1).

The maximum likelihood estimator (MLE) of k in terms
of the measurements XA(t0), . . . ,XA(tN) is then given as

k̂ =−1
τ

ln

(

1− XA(t0)−XA(tN)

∑N−1
i=0 XA(ti)

)

, (4)

and the Cramér-Rao lower bound (CRLB) for the variance of
unbiased estimators of k is equal to

CRLB =
(1− e−kτ)2

τ2e−kτ XA(t0)(1− e−kNτ)
.

The estimator in (4) was applied to an enzyme-substrate re-
action in [18]. It was compared to estimators based on a
Poisson distribution approximation. More information on its
statistical properties (bias and variance) can also be found
in [18].

3. THE REVERSIBLE FIRST ORDER REACTION

The chemical notation for a reversible first order reaction is

given by A
k1→←
k2

B. The reaction consists of two coupled single

channel first order reactions, and the order in which these two
reactions take place is random.

3.1 Distribution function

Let XA(t) be the number of A molecules at time t, x0 the to-
tal number of A and B molecules in the closed system, and
k1 and k2 the forward and backward rate constants, respec-
tively. Using the master equation approach, we derived the
generation function as

F(s, t) =

(−λ (1− s)e−kt +λ + s
(1− s)e−kt +λ + s

)XA(0)

×
(

(1− s)e−kt +λ + s
1+λ

)x0

,

where k = k1 + k2 and λ = k1
k2

. The generation function is
defined as

F(s, t) =
x0

∑
x=0

px(t)s
x
,

where px(t) (x = 0,1, . . . ,x0) is the distribution function for
the number of A molecules at time t. Consequently, the val-
ues px(t) can be obtained by computing the coefficient of the
term of order x in the Taylor series of F(s, t) about s = 0. For
the special case where XA(0) = x0 and hence XB(0) = 0, the
distribution function can be expressed analytically:

px(t) =

(

k1

k

)x0
(

x0

x

)(

e−kt +
1
λ

)x

(1− e−kt)x0−x
.

For the general case, an analytic expression for the expected
value of the number of A molecules and the variance can be
derived from the generation function:

E(XA(t)) =

(

∂F
∂ s

)

s=1
=

(1− e−kt)x0

λ +1
+XA(0)e−kt (5)
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Figure 1: The distribution function for the number of A
molecules in the first order reversible reaction after t =
0.005 s, t = 0.01 s and t = 0.05 s. The initial values are
XA(0) = 103 and XB(0) = 10 and the rate parameters are
equal to k1 = 100 s−1 and k2 = 150 s−1. The circles rep-
resent the true distributions and the plus signs the Gaussian
approximations.

and

Var(XA(t)) =

(

∂ 2F
∂ s2

)

s=1
+

(

∂F
∂ s

)

s=1
−
(

∂F
∂ s

)2

s=1

=
1

(1+λ )2 (1− e−kt)

×
(

x0λ + e−kt (XA(0)(λ 2−1)+ x0
)

)

. (6)

A different derivation of the expressions (5) and (6) can be
found in the appendix of [15].

Again, the true distribution for the number of A
molecules can be approximated by the discretized normal
distribution with mean and variance equal to the values in (5)
and (6):

px(t)≈
1
D

1√
2πσ 2

e−
(x−µ)2

2σ2
x0

∑
i=0

δ (x− i) , (7)

where D = ∑x0
i=0

1√
2πσ2 e−

(i−µ)2

2σ2 , µ = E(XA(t)) and σ 2 =

Var(XA(t)).

Example 1 Assume that XA(0) = 103, XB(0) = 10, k1 =
100 s−1 and k2 = 150 s−1. We show the true distributions
(circles) for t = 0.005 s, t = 0.01 s and t = 0.05 s and their
Gaussian approximations (plus-signs) in Figure 1. The nor-
mal distributions are clearly very good approximations.

3.2 Simulation

The simulation procedure for the reversible reaction is simi-
lar to that of the single channel reaction in Section 2.2. As-
sume that the initial number of A molecules and B molecules
are known and equal to a0 and b0, respectively. We generate
a realization of the evolution of the number of A molecules
at given time points t0, . . . , tN as follows.
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Figure 2: Simulation results for the reversible first order re-
action, where XA(0) = 103, XB(0) = 10, k1 = 100 s−1 and
k2 = 150 s−1. In the top picture we show in full line a real-
ization of the stochastic simulation algorithm (SSA) [4], the
asterisks represent a realization of the τ-leap method with
variable τ [6] and a realization obtained with the simulation
method described in Section 3.2 is given by the circles. The
only difference in the bottom picture is the τ-leap realization
(asterisks). It is obtained with the same constant τ = 0.0075 s
as in our Gaussian simulation method.

1. XA(t0) = a0 and x0 = a0 +b0
2. for i = 1 to N

• substitute XA(0) in (5) and (6) with XA(ti−1)
• draw a sample x from (7) with t = ti− ti−1
• XA(ti) = x

The number of B molecules at t0, . . . , tN is equal to XB(ti) =
a0 +b0−XA(ti) for i = 0, . . . ,N.

Example 2 We use the same initial values and rate param-
eters as in Example 1. The first order reversible reaction
is simulated on the time interval [0,0.15] s in four different
ways:

1. using the exact stochastic simulation algorithm (SSA) de-
scribed in [4] (full line in Figure 2),

2. using the improved τ-leap method of reference [6] (as-
terisks in the top picture of Figure 2),

3. using the method presented in this section, based on
the Gaussian approximation of the distribution functions
(circles in Figure 2), where the constant time steps τ =
ti− ti−1 are equal to 0.0075 s,

4. using the τ-leap method with constant leap-size (as
in [15]) τ = 0.0075 s (asterisks in the bottom picture of
Figure 2).

As can be seen in the top picture of Figure 2, the τ-leap
method with variable τ takes more simulation steps than the
method presented in this paper (50 vs. 20). Especially in the
beginning of the reaction, where the number of A-molecules
decreases fast, small simulation steps are taken. In the bot-
tom picture, we show what happens if the same time points
are taken in the τ-leap method as in our Gaussian method.
The first point at 0.0075 s obtained by τ leap, is much too
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τ N k1 k2 mean ±2σ
0.1 50 0.5 1 0.51±0.07 1.01±0.10

1 1 1.00±0.15 1.00±0.12
1.5 1 1.52±0.28 1.01±0.16
2 1 2.04±0.34 1.02±0.16

0.025 200 0.5 1 0.50±0.07 1.01±0.10
1 1 1.00±0.14 1.00±0.12
1.5 1 1.50±0.19 1.00±0.12
2 1 2.01±0.27 1.00±0.12

Table 1: The estimation results for different values of the
reaction parameters k1 and k2.

small. Increasing the time step τ to 0.01 s even leads to neg-
ative numbers of molecules, whereas our Gaussian method
still performs very well.

3.3 Parameter estimation

Given the number of A molecules at t0, . . . , tN , denoted by
XA(ti) (i = 0, . . . ,N), and the total amount of molecules in the
closed system x0, we want to estimate the reaction parame-
ters k1 and k2. Based on the Gaussian approximation for the
distribution of A molecules in (7), the likelihood function of
the parameters k1 and k2 can be written as

p(XA(t0), . . . ,XA(tN);k1,k2) =
N

∏
i=1

p(XA(ti)|XA(ti−1);k1,k2) ,

(8)
where p(XA(ti)|XA(ti−1);k1,k2) is the Gaussian distribution
in (7) with D = Di is the normalization factor, the mean is

equal to µi = (1−e−k(ti−ti−1))x0
λ+1 + XA(ti−1)e−k(ti−ti−1) and the

variance is

σ 2
i =

1
(1+λ )2 (1− e−k(ti−ti−1))

×
(

x0λ + e−k(ti−ti−1)(XA(ti−1)(λ 2−1)+ x0)
)

.

The MLE for the parameters k1 and k2 can then be obtained

as (k̂1, k̂2) = argmin
k1,k2

{

∑N
i=1 2lnDi + lnσ 2

i + (XA(ti)−µi)
2

σ2
i

}

.

Since it is not possible to find an analytical expression for
the maximum of the likelihood function (8), we used a nu-
merical optimization method to estimate the parameters.

Example 3 Estimation results of the reaction parameters k1
and k2 are given in Table 1. The parameter τ denotes the time
interval between two samples. The parameter N denotes the
number of samples taken in each realization. The number of
realizations used for the estimation of the mean and variance
is 100. The simulated data used for estimation are generated
with the SSA [4]. The initial condition for the simulation is:
XA(0) = 103 and XB(0) = 0.

4. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the stochastic properties of two
basic reactions, the single-channel and reversible first order
reactions. Based on their distribution functions, we proposed
fast and accurate stochastic simulation methods and showed
how the reaction parameters can be estimated from measured
data points.

Currently, we are extending this study to second order re-
actions. The true challenge, however, will be to tackle sets of
coupled chemical reactions. Finally, we will apply our results
to stochastic modeling, simulation and parameter estimation
of enzyme reactions in lung tissues.
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