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ABSTRACT

This paper presents wideband MIMO cable measurements of
a 10-pair 0.4mm UTP cable, which are then used to param-
eterise and verify the Joffe MIMO channel model for UTP
transmission lines. The frequency dependance of the model
parameters is pointed out, and prediction results based on
various parameter sets are compared. The aim of the paper
is to illustrate problems in the modelling accuracy which still
exist at high frequencies.

1. INTRODUCTION

Crosstalk in Unshielded Twisted Pair (UTP) cables is the
main impairment to the performance of Very-high-speed
Digital Subscriber Lines (VDSL). The impact of crosstalk
can be mitigated by Multiple Input Multiple Output (MIMO)
systems, the performance assessment of which relies on
models of the cable’s transmission and crosstalk parameters.
Two MIMO channel models have been proposed by Joffe [1]
and Cioffi et al [2]. However, there are still open questions
about the models’ applicability and their appropriate param-
eterisation. There is a need for extensive wideband MIMO
cable measurement data which would allow for verification
of the channel models. This paper presents the results of
measurements taken on test UTP cables, as well as results of
fitting the data to Joffe’s model [1].

2. CHANNEL MODELLING

The two favoured MIMO channel models [1] [2] have
mathematically equivalent circuit models and corresponding
ABCD matrices [2]. However, the underlying model param-
eters and the measurements necessary for their determination
differ. The model of Cioffi et al [2] applies directly the mul-
ticonductor line theory from [3], using one of the wires as
a reference “earth”. While its theory is well developed, this
model does not take advantage of the inherent symmetry of
the wires in twisted pairs. Joffe’s model [1] uses this sym-
metry and offers a physically more appealing set of parame-
ters. Therefore, the latter has been chosen as the basis for the
MIMO cable measurements presented in this paper.

A simplified version of Joffe’s crosstalk and transmission
model between two twisted pairs [1] is shown in Fig.1. The
model parameters line capacitance C, resistance R, and in-
ductance L are related to direct transmission, whereas the
crosstalk capacitance Cxa, the equivalent capacitance imbal-
ance d, and the difference in the mutual inductances between
the wires Mm characterise the crosstalk. These parameters
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Figure 1: Joffe’s simplified two-pair MIMO channel model
for multi-pair UTP cables [1].

can be calculated as described in [1] from insertion loss and
impedance measurements, which are discussed below.

3. MEASUREMENT PLAN

The MIMO channel measurement plan proposed in [4] has
been used as a guideline for the measurements presented
here. Three cable lengths - 2m, 10m, and 150m of the same
Poly-Ethylene Twin (PET) 10 pair 0.4mm UTP cable have
been measured at 401 frequencies in the range from 0 to 30
MHz with 75kHz increments. However, the actual measure-
ments have been geared towards Joffe’s channel model [1],
and include the types of insertion loss and impedances re-
quired for determining the parameters of this model.

The measurements have been taken with a network ana-
lyzer between any two pairs in the 10-pair cable, from both
ends of the cables. The measurement plan is presented be-
low, noting that terminal notations are as shown in Fig.1.

3.1 Insertion Loss Measurements
� Insertion loss between 100 Ω source at terminals 11 and

100 Ω load at terminals 21 (transfer function).
� Insertion loss between 100 Ω source at terminals 11 and

100 Ω load at terminals 12, terminate ends 21 and 22
in 100 Ω loads (NEXT), or leave open circuit, or short
circuit.

� Insertion loss between 100 Ω source at terminals 11 and
100 Ω load at terminals 22, terminate ends 12 and 21
in 100 Ω loads (FEXT), or leave open circuit, or short
circuit.
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Figure 2: Measured and calculated [2] wire resistance R per
metre of 0.4mm UTP in multipair cable.
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Figure 3: Measured, measured by Joffe at 10 KHz [1], and
calculated [2] wire inductance L per metre of 0.4mm UTP in
multipair cable.

3.2 Impedance Measurements
� Impedance between terminals 11a and 11b, with termi-

nals 21 terminated in 100 Ω load, or left open circuit, or
short circuit (input impedance).

� Impedance between terminals 11 and 12, where 11a and
11b are short circuited, 12a and 12b are short circuited.
Terminals 21 and 22 are either left open circuit, or all
21a/21b/22a/22b are short circuited, or with a 100 Ω
load between 21a/21b and 22a/22b (impedance between
lines).

� Impedance between terminals 11a and 21a, and between
11b and 21b (impedance of a wire).

4. RESULTS

The measurement results for the 2m cable piece have been
used to obtain the relevant model parameters. The channel
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Figure 4: Measured and measured by Joffe at 10 KHz [1] line
capacitance C per metre of 0.4mm UTP in multipair cable.
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Figure 5: Measured and measured by Joffe at 10 KHz [1]
crosstalk capacitance Cxa per metre between two 0.4mm
UTPs in multipair cable.

model has then been used to calculate the transfer function
and crosstalk for a 10m line, and the predictions have been
compared with measurements of the 10m cable piece.

4.1 Model parameters

The measured line resistance R (Fig. 2) shows a perfect
match with theoretical calculations [2] up to 1 MHz. As
the frequency increases, the theoretical and measurement re-
sults diverge, most likely because of a resonance observed in
the 2m cable measurements at 22 MHz. Similarly, the mea-
sured wire inductance L (Fig. 3) is close to the theoretical
values [2] at low frequencies, but diverges at the higher fre-
quencies. The measured line capacitance C (Fig. 4) and the
crosstalk capacitance Cxa (Fig. 5) also increase at high fre-
quencies although theoretically they should be virtually fre-
quency independent. The capacitance imbalance d and the
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Figure 6: Measured and measured by Joffe at 1 MHz [1]
capacitance imbalance d between two 0.4mm UTPs in mul-
tipair cable.
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Figure 7: Measured and measured by Joffe at 1 MHz [1]
difference in the mutual inductances Mm per metre between
two 0.4mm UTPs in multipair cable.

difference in the mutual inductance Mm have a complex fre-
quency dependence, but exhibit a general trend to decrease
at higher frequencies (Fig. 6 and 7).

It is interesting to note that the current results for L, C,
and Cxa at low frequencies agree well with Joffe’s measure-
ment at 10 kHz [1]. Note also that d obtained in the current
measurements is generally higher, and Mm - lower than those
reported by Joffe in [1].1 Differences in d and Mm measured
on different cable samples can be expected since they are
related to the defects in the cable symmetry and therefore
depend on the cable structure and the deformations in the
particular cable piece. It should also be noted that at higher

1The parameter values reported by Joffe in [1] have been measured at
single frequencies - 10 kHz for L, C, and Cxa, and 1 MHz for d and Mm .
However for the purpose of comparison they have been represented in the
graphs with a straight line across the whole frequency range.
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Figure 8: Line transfer function measured directly (meas),
or calculated using theoretical parameters [1,2], or measured
parameters for a pair from a 10m, 10-pair UTP cable.

frequencies the obtained parameter values are affected by the
fact that the signal wavelength becomes comparable to the
length of the measured cable piece, which leads to distor-
tions in the measurement results [1].

4.2 Model predictions

The calculations have been carried out for a line length of
10 m, assuming the line is made up of cascaded elementary
units of 1 cm each. Three sets of model parameters have
been used - the measured frequency-dependent parameters
presented above, the parameter values utilised by Joffe [1]
(which for the normal transfer parameters R, L, and C vir-
tually co-incide with the theoretical ones [2]), and a mixture
of theoretical values for the normal transfer parameters, and
measured values for the crosstalk. The predictions have been
compared to measurements of a 10m cable piece of the same
drum as the 2m piece used to determine the parameters.

The calculated line transfer function (Fig. 8) is close to
the measured one at low frequencies, but diverges as the fre-
quency increases. The measured parameters in particular
lead to predictions with large ripples in the high frequency
spectrum, whereas the theoretical parameter values [2] pro-
vide a relatively good match across the whole frequency
range.

For far-end crosstalk (FEXT), Joffe’s parameter set yields
a prediction which is higher than the measured FEXT, is un-
naturally smooth and does not model the ripples evident in
actual measurements (Fig. 9). The frequency-dependent pa-
rameter values lead to a much better fit for FEXT, which fol-
lows the ripples in the measured curve even at higher fre-
quencies. The mixture of theoretical transfer and measured
crosstalk parameters produces an estimate which follows the
measured FEXT, but again is unable to predict ripples.

All parameter sets yield poor estimates for NEXT at
higher frequencies (Fig. 10). The entirely measured param-
eter set reflects better the ripples in the near-end crosstalk
(NEXT) measurements than the other two sets, but is still far
from the actual measurements.

The results show that the model in [1] performs well at
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Figure 9: FEXT measured directly (meas), or calculated us-
ing Joffe’s parameters [1], or measured parameters, or mea-
sured crosstalk parameters / theoretical normal transfer pa-
rameters [2], between two pairs in a 10m, 10-pair UTP cable.
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Figure 10: NEXT measured directly (meas), or calculated us-
ing Joffe’s parameters [1], or measured parameters, or mea-
sured crosstalk parameters / theoretical normal transfer pa-
rameters [2], between two pairs in a 10m, 10-pair UTP cable.

frequencies up to 2 MHz, but yields poor results at higher fre-
quencies. Using frequency-dependent parameters appears to
give more accurate crosstalk predictions, however the trans-
fer loss estimate is poor. If measured crosstalk parameters
and theoretical transfer parameters are utilised, the transfer
function estimate is better, but the crosstalk estimates - worse
than the entirely measured parameter set.

5. CONCLUSIONS

This paper has presented wideband MIMO cable measure-
ments of a 10-pair 0.4mm UTP telephone cable. The mea-
surement results have been used to determine the parame-
ters of Joffe’s channel model [1]. The calculated parame-
ters have been compared to the values reported in [1] and the

frequency dependance of the crosstalk parameters has been
pointed out. The channel model predictions based on vari-
ous parameter sets have been compared, and it was shown
that the model in [1] with homogenious parameter values per-
forms well only up to about 2 MHz. There may be a scope
for improved estimates at higher frequencies if frequency-
dependent parameters are used, which however can cause
deterioration of the pair loss predictions. A trade-off can be
achieved by setting only the crosstalk parameters to be fre-
quency dependent, which achieves good pair loss estimates
and a better fit for the crosstalk predictions than if constant
crosstalk parameters are used. Nevertheless, there are still
problems in the modelling accuracy at high frequencies.

This research was stimulated by the need for accurate
channel modelling for MIMO systems, which have the po-
tential to mitigate the impact of crosstalk, thus increasing the
usable bandwidth and consequently the achievable bit rate of
VDSL systems.
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