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ABSTRACT

We present a straightforward algebraic setting for the de-
modulation of a QPSK (Quadrature Phase Shift Keying)
signal over a convolutive and additive noise channel. Our
method exploits the form of the continuous-time received
signal without questioning the digital nature of the commu-
nication system. The developments rely on classical deter-
ministic numerical analysis. No assumption is required for
the statistical properties of the signals and noises. The pro-
posed method estimates the channel using a very short train-
ing sequence (typically 5 symbols) and, afterwards, directly
reconstructs the transmitted symbols using a very fast (on-
line) estimation procedure. The simulation results show a
good robustness to additive noise disturbance and to chan-
nel’s order mismatch.

1. INTRODUCTION

Channel equalizers have become an integral part of today’s
communication systems. Equalization methods, including
both training and (semi-) blind techniques, have now a long
history, well documented in the litterature [1]. Some features
of this history may be summarised as follows:

e An extensive use of highly developed probabilistic tools
has become quite universal.

e Shannon’s information theory and digital computers have
imposed an almost exclusive analysis of discrete-time
signals.

Now, in a probabilistic setting, some prior knowledge on the
statistical distribution of the signals and noise disturbances,
is a key assumption. And, performance of asymptotic na-
ture with concomitant processing delays are inherent to al-
most any probabilistic approach. On the other hand, the
“true” physical nature of the continuous-time signals is ig-
nored when an early sampling is applied.

In this paper, we propose a new method for the detection
of QPSK (Quadrature Phase Shift Keying) modulated sym-
bols, transmitted through a dispersive and noisy channel. The
method is based on a novel identification/estimation theory
developped by the authors (due to lack of space, the theory is
not pressented here. See [2, 3]). This theory, which is based
on differential fields', ring theory, and operational calculus,
leads to the following facts:

e No precise statistical knowledge of the noise is required?.

IDifferential fields are already playing some rdle in non-linear control
(see, e.g., [4]).

2Unknown but Bounded and Interval Analysis are other ways of a com-
plete different nature for avoiding probability and statistics in estimation.
See, e.g., [5], [6] and the references therein.

t2]

e We are keeping the “true” physical nature of the
continuous-time signals, which might be forgotten when
sampling?.

e There is no distinction between stationary and non-
stationary signals.

e The computations of the estimates can be done on-line.
Applying this theory, we first identify a rational transfert
function model for the channel using a very short training se-
quence (typically 5 symbols). Then, we directly reconstruct
the transmitted symbols using a very fast (on-line) estimation
procedure.

The system model is presented in section 2. Section 3
is devoted to the (continuous-time) channel identification,
while section 4 presents the proposed demodulation method.
Simulation results, including noise perturbation and channel
undermodelling scenarios, are shown and discussed in sec-
tion 5.

2. SYSTEM MODEL

Figure 1 shows the system in study. The method presented
here may be applied to other signal modulation schemes. Let
{&,} denotes the (complex) sequence of the transmitted sym-
bols. The symbols are drawn from a finite alphabet. The
transmitted signal, u(¢), has the following form:

lt/T]
u(t)=3 {0{&}cos(wt)+D{&}sin(w.t)} gt —kT)
k=0
. . . . (1)
where T is the symbol period, g(¢) is the shaping pulse and
@, is the carrier frequency. The notation |-| stands for the
integer part of the argument. To simplify the developments,

we consider, without loss of generality, the complex base-
band signal that we still denote by u(¢):

u(t) = ifkg(tfkT), for (n— 1T <t<nT (2)
k=0

The channel output signal, x(¢), is given by:

x()= /0 "u(T)h(t - T)dT 3)

where 4(2) is the impulse response of the channel. For the
moment we will consider a system with no noise. We can
also represent this same relation using the Laplace transform:

X(s) = a(s)H(s) 4)

3Note that the differentially flat systems [4], which are so useful in prac-
tice, have also shed a new light on sampling in control.
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Figure 1: System model

where x and 4 are the Laplace transforms of x(¢) and u(¢) and
H(s) is the transfer function of the channel.

3. CHANNEL ESTIMATION

To estimate the channel, we consider a rational transfert func-
tion model F (s) as in:

by+bys+ ...+ bysM
—ay—as—...—ay sV 4N

F(s) = (5)

where a,, = 1 without loss of generality.

Let us first ignore the noise and start with a very simple
case where M = N = 1 in order to present the basic princi-
ples of the method. We assumed that, at the receiver, u(¢) is
known during one symbol period, that is, during an interval
(n—1)T <t < nT. In this case, the received signal satisfies
the differential equation:

X(t) = agx(t) + byu(t) + byu(t), 6)
which reads in the operational domain as
SX — Xy = agX + byit + b (st — u) @)

where u, = u((n—1)T) and x, = x((n — 1) T') denote the ini-
tial conditions. To determine the unknown parameters a,
b, and b, we can differentiate (7) with respect to s recur-
sively, in order to generate a system having the same number
of equations and unknowns [2]. In this sense, we can also
include the necessary differentiation for eliminating the de-
pendence on the initial conditions. We will then differentiate
(7) 3 times. The resulting system of equations is then:

(s)D = agt® + by + b, (s2)?, i=1,2,3 (8)

where the superscript (i) denotes the derivation of order i,
with respect to s. As the differentiation in the time domain is
a difficult and not robust operation to calculate numerically,
we divide all equations by a factor s¥, where y is a constant
greater than the highest power of s appearing in the system.
Here, y has to be greater then 1 and the resulting system:

(si2) @

(%) (@) 20 42
OW 1 sY

—a b
sY aOsV+

(€))

contains only integral terms of the form

. 70) ~ £\ .
[]U: SV*] al’ld)(ij: SVTJ ,120;1;2a39]2071

(10)

To obtain the time domain analog U, ; and X, of the coeffi-

cients U, ; and X, » we have to remember that we are in a time
interval (n —1)7T <t < nT where u(¢) is known. In this inter-
val, a change of variables gives: #(T) = u((n — 1+ 1)T) and
(1) =x((n—14+T1)T), where we have set t = (n+ T)T and
so 0 < T < 1. The time domain coefficients U, i and Xi/ are
then obtained by using #(T) and %(7) in the following way

[2]:

,li A i i
Uy = ﬁ/o (A~ a(r)dr

TR -
X, = ﬁfo (A =1V rE(T)dT (1)

where the integration time A (0 < A < 1) may be chosen very
small. This explains the fastness of the method.

Developing (9) and using (10) and (11), we finally obtain
the estimates of the channel parameters from the solutions of
the following system of equations:

Xoo+ X1 = agXig+b3Uo+b1(Upy+Upy)
2X)0+ Xy = agXoy+byUyy +b,(2U1+Uy)
30 +X5 = agXzy+byUsy+b,(3Uy +Uy;) (12)

The method shown above can be easily generalized. Consid-
ering F(s) given by (5), (7) can be extended to:

Vi — (sN_leJrsN_zxo+SN_35€0+...+x(()N_1)>

N=2)x .. —x(N-2))

0
tbgii+ ...+ by (M — sM Dy — L — M)
(13)

In this case, the number of derivatives needed to eliminate the
dependence on the initial conditions is equal to the maximum
between M and N. If we consider the channel to be proper,
then M < N and N derivations are sufficient. Given that we
have M + N + 1 variables, equation (13) has to be differenti-
ated 2N + M times. Thus, the desired system of equations is
obtained by taking the derivatives of orders N to (2N + M).
These equations have the following general form:

= ao)?—i-.A.—b—aNfl(sN*l)?—s(

("2) D = a2 + . 4 ay_ (VRO
by 4 by, (M) D (14)
where i =N,....2N+ M.
Dividing both sides of (14) by s¥, where now y > N, gives

a system which reads in the time domain as:

ay

-1l =2 (15)

L by

where the entries of the (N+M+1) x (N+M+1) and (N +
M+1) x 1 matrices & and 2 are finite linear combinations
ofUij andXij in (11).
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Figure 2: Demodulation method

4. DEMODULATION METHOD

Once we have found F(s) from (15), one could use its in-
verse as a zero-forcing equalizer. Then sampling its output
would allow one to recover the transmitted symbols. How-
ever, this assumes that not only F(s) is minimum phase but
also, the estimation is quite precise. Moreover, it is well
known that zero-forcing equalization is not robust to noise
perturbation. For these reasons, we rather exploit* the form
of the continuous-time received signal together with the esti-
mate of the channel to detect the transmitted symbol directly.
As the simulation will show, the method is robust to noise
and channel order mismatch.

To begin, denote by f(#) the impulse response corre-
sponding to the estimated channel model F(s). Assuming
that F'(s) is strictly proper, this impulse response may read-
ily be computed as:

N
[ =3 Ae e (16)
k=1

where the w,’s are the poles of F'(s) and the A,’s are con-

stants. The received signal x(¢) in the n”” symbol period,
(n—1)T <t < nT, then reads as

0= 3 & /0 S(T—kT)f(1= 1)t = 5 £ A0, (D)

where we have set f,(t) = [3g(T —kT)f(t — T)dT. Based on

the previously detected symbols, the n* transmitted symbol
is estimated by the explicit formula:

nT n—1 nT
/(nfl)TX(t)dt - kZOEk /(nq)rfk(t)dt
& = — (18)
lﬂl Ju(t)dt

n—1)T

Remark 1. Since it is necessary to use the previous decided
symbols to obtain the current one, the proposed demodula-
tion scheme may be viewed as a continuous-time decision
feedback equalizer (DFE), as shown in figure 2 [§].

5. DISCUSSIONS AND SIMULATION RESULTS

Starting with the channel transfer function estimation, as was
seen in section 3, u(¢) has to be known at the receiver dur-
ing one symbol period. Note that the knowledge of only
one transmitted symbol is not sufficient to reconstruct u()
at the receiver. Indeed, the number of required symbols cor-
responds to the number of symbol period within the support

4This idea has been succeesfully applied to the demodulation of CPM
signals [7]
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Figure 3: Recovered symbols after demodulation, no noise

of the shaping pulse g(¢). Here, the raised cosine function
is considered for g(¢), with a support corresponding approx-
imately to 57. A training sequence of 5 symbols is then nec-
essary to obtain a good estimate of u(¢). The raised cosine
roll-off factor was set to 0.33. The unknown channel was
modeled by the non minimum phase transfer function:

s2—155—1
H:
§$3+7.452417.4454+27.2
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Table 1 compares the zeros and poles of the channel with the
ones of F(s), obtained using (15) with M =2, N =3 and
y = 6. The integrals were computed numerically using the
classical trapezoidal rule, with a very small grid (10° points).
(Higher order integration methods require much less points.)
As it can be seen, the result is a very good approximation of
H(s).

Zeros Poles
H(s) -0.5 2 -1.2+2i -1.2-2i -5
F(s) | 0.4965 | 2.0466 | -1.1944 | -1.1944 | -4.9979
+1.99261 | -1.9926i1

Table 1: Comparison between H(s) and F(s)

Figure 3 shows the recovered symbols, &,, after the de-
modulation process, for the transmission of 100 symbols, us-
ing the estimated channel F'(s) shown in table 1. This result
was obtained using (18). We can see that the remaining in-
tersymbol interference (IS]) is a very small.

In the above simulation we used M and N equal to the
order of the numerator and denominator of the channel, but
usually these values are not known. Simulations show that
in the overmodelled case the zeros and poles in excess have
large absolute valued real parts. Among them, the poles with
negative real part have a negligeable effect on the global re-
sponse of the system. Those having positive real parts ob-
viously make the system unstable. However, as it is easy to
identify them, it suffices to replace them by their opposite.
An example is shown in table 2. We considered a minimum
phase channel with two zeros and three poles and estimated
it using M =1, N =3 (F|(s)) and M =2, N = 4 (F,(s)).
The first case, F(s), corresponds to an undermodeling sit-
uation. Although the model order is not sufficient to com-
pletely eliminate the ISI in figure 5, we can note that the eye
is completely open. For comparison, the channel output sig-
nal is shown in figure 4. In the second case, we consider an
overmodeling setting. The poles and zeros of the channel are
well estimated while the pole in excess has a large absolute
value when compared to the others. As shown in figure 6,
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Figure 5: Recovered symbols for M smaller then necessary

which shows the constellation of the demodulated symbols,

this excess pole does not have a significant effect.

Zeros Poles
H(s) | 05 | -3 | -12#2i | -1.222i -5
Fi(s) -0.716 -1.236 | -1.236 -4.691
+2.780i | -2.780i
F,(s) | -0.546 | -3.149 | -1233 | -1.233 | -4.989 | -6990
+2.029i | -2.029i
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Figure 6: Recovered symbols for N greater then necessary

s #

-1
15 -1 -05 05 1 15

0
Real
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