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ABSTRACT

Analysis of shapes is important for image analysis. The no-
tion of shapes has been used in a variety of ways across the
literature. From the definition of a shape, to the derivation of
statistical procedures for shape analysis, the usage of shape
is different among different papers. In this paper, we sum-
marize common attributes of different approaches, and com-
pare a few commonly used ones. In particular, we focus on a
landmark-based shape analysis, a diffeomorphism approach
to shape matching, and a geometric approach to analyzing
shapes of curves.

1. INTRODUCTION

Detection, extraction and recognition of objects images is
an important area of research. Objects can be characterized
using a variety of features: edges, boundaries, colors, mo-
tion, shapes, locations etc. These features are often used in
a statistical framework to perform image analysis. In other
words, one defines a feature space, learns probability models
on these spaces using past (training) data, and uses them to
conduct statistical inferences in future applications. Shape is
a key feature of imaged objects and often provides a reliable
way of studying objects as they appear images. Tools for
shape analysis can prove important in several applications
including medical image analysis, face recognition, finger-
print analysis, space exploration, and underwater search.

One reason for pursuing shape analysis is the possibil-
ity that an efficient representation and analysis of shapes can
help even in situations where the observations are corrupted,
e.g. when images have excess clutter or partial obscuration.
Shape is a global feature that can help overcome loss of lo-
cal data that results from partial obscuration, or from struc-
ture less clutter. This possibility, along with the development
of statistical methods, has led to the idea of Bayesian shape
analysis. In this approach, contextual knowledge is used to
impose prior probabilities on shape spaces, followed by the
use of posterior probabilities to perform inferences.

In this paper, we review some current techniques used for
statistically analyzing shapes of objects in images. Although
there is a multitude of approaches described in the literature,
we focus here only on a few broad ideas. Our goal is to point
out the common elements amongst these approaches, and to
compare them by highlighting their differences.

This paper is organized as follows: In section 2, we first
present a discussion of general ideas common to various ap-
proaches. In Section 3, we look at a few individual ap-
proaches to shape analysis and analyze their similarities and
differences. We conclude the paper in Section 4 with a brief
summary.

2. GENERAL SHAPE ANALYSIS

In this section, we summarize elements of shape analysis
common to most approaches.

2.1 Shape Representations

Although a number of researchers have utilized the notion of
shapes in image analysis, there is no universal agreement on
its definition and usage. The breadth and scope of applica-
tions may require that the analysis be adapted to the specific
task at hand. These treatments even differ in what is consid-
ered a part of shape of an object. Some descriptions are re-
stricted only to the boundaries of objects. Here, one analyzes
the contour curves for 2D objects or boundary surfaces of 3D
objects, for example as shown in the middle row of Figure 1.
Other papers consider both the boundaries and the interior
regions of objects in shape analysis. A large body of work
in shape analysis considers shape as identified by a number
of landmark points on the object (either on the boundary or
in interior), as shown in the bottom row. Some researchers
include the object textures, given by pixels values in images,
while others ignore textures and focus only on the locations
(coordinates of points of interest).

++

Figure 1: Different representations of shapes. Some re-
searchers use full images, shown in the top row, in a shape
analysis, while others restrict to boundary curves, shown in
the middle row, for that purpose. Some others use only the
landmark points with examples shown in the bottom row.

We will use C to denote the set of all values attained by
these shape descriptors. Later, we will make it precise in the
context of different approaches.

2.2 Shape as an Equivalence Class

Despite differences in the definition and usage of shapes, cer-
tain attributes have been consistently associated with shapes
across the literature. For instance, shape is a property that
is considered invariant to rigid transformations such as ro-
tations and translations. Also, a uniform scaling of object
coordinates is viewed as preserving its shape. Thus, rigid
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rotations, translations, and uniform scaling are termed as
shape preserving transformations or similarity transforma-
tions. Shown in Figure 2 is an example of the same shape
rendered at different similarity transformations.

The set of all possible similarity transformations, call it
T , forms a group. A group is a set endowed with an associa-
tive operation (denoted here by ◦) with the property that there
is an identity element id, and every element has an inverse.
(please refer to [16] for more details). The group structure is
instrumental in structuring compositions of the transforma-
tions: one transformation (t1) applied after another transfor-
mation (t2) have an equivalent effect of a third transformation
(t3) applied alone. The third transformation is a product of
the first two, t3 = t2◦t1. For example, the set of all orthogonal
matrices with determinant +1, denoted by SO(n), forms the
rotation group, and R

n forms the translation group. Together,
they form the group of rigid motion SE(n) ≡ SO(n) n R

n;
R+ forms the scale group. Let T ≡ (SE(n)×R+) denote the
group of similarity transformations and let s ∈ C be a repre-
sentation of a shape. For a τ ∈ R

n, O ∈ SO(n), and ρ ∈ R+,
their action on a point p ⊂ R

n is given by

p 7→ (Opρ + τ) .

For s ∈ C , the action of t on s, denoted by t · s, implies the
action of t on each element of s. Then,

T · s = {t · s|t ∈ T} ⊂ C ,

denotes the equivalence class of representations containing s.
The subset T · s is also called the orbit of s under T .

Figure 2: Equivalence of shapes despite different pose and
scales.

Despite different components included in description of
shapes, eventual shape representations always belong to a
quotient space. The shape space is given by S ≡ C /T , the
space obtained by identifying elements that differ from each
other by similarity transformations. It is often the case that
C is a Riemannian manifold and its geometry can be used
to study the shape space S . Figure 3 shows a cartoon view
of C where each vertical broken line denotes an orbit, or an
equivalence class of shapes. Each point on this line can be
mapped to any other point on the line by applying an ap-
propriate similarity transformation. Two observed shapes lie
on two different vertical lines, if they are indeed different
shapes.

2.3 Shape Metrics

An important tool in shape analysis is a metric for quantify-
ing shape dissimilarities. Intrinsic metrics on shape spaces
can be obtained using geodesics, which can be loosely de-
fined as shortest paths between given points. The technical
definition of a geodesic in C is slightly different. A path
in C is a geodesic if the covariant derivative of its velocity
field vanishes at every point, that is, the intrinsic acceleration
of the path is zero. Details on the computation of geodesics
will be provided later.

For any s ∈ C , let Ts(C ) denote the space of vectors tan-
gent to C at s. For a vector v ∈ Ts(C ), there is a unique
geodesic ψ̃x(s;v) (x denotes the time parameter) starting at s
with initial velocity v, that is, ψ̃0(s;v) = s and ˙̃ψ0(s;v) = v.
v is called the infinitesimal generator or simply generator
of ψ̃ . Given s1,s2 ∈ C , one wishes to find a geodesic path
connecting them. One can phrase this question as a shoot-
ing problem in C : find the direction v ∈ Ts1(C) such that the
geodesic starting from s1 in the direction v reaches the point
s2 in unit time, i.e., ψ̃1(s1;v) = s2. Although in some sim-
ple cases, solutions can be found analytically, a numerical
approach is adopted in general. The idea is to define a cost
function E(v) that is minimized at the desired direction v and
treat the construction of geodesics as an optimization prob-
lem on the (linear) space Ts1(C ).

A metric on the quotient space S can be defined as fol-
lows. If s1,s2 ∈ C represent shapes in S , let [s1], [s2] denote
their shape class in S . The distance d([s1], [s2]) (or sim-
ply d(s1,s2), abusing notation) is the length of the shortest
geodesic in C from a point in the orbit of s1 to a point in the
orbit of s2. A geodesic in C realizing such distance in S is
referred to as a geodesic in S .

If T acts on C by isometries (i.e., without distorting the
geometry of C ), it can be shown that a geodesic in C is also a
geodesic in the quotient space S , provided that it is perpen-
dicular to the orbits of T it intersects. In addition, a geodesic
in C that is perpendicular to one of the orbits is perpendic-
ular to all orbits it meets. Thus, we denote the subspace of
Ts(C ) formed by all vectors orthogonal to the orbit of s by
Ts(S ) and call it the tangent space to S at s. In Figure
3, equivalence classes of shapes are depicted with vertical
dashed lines, while geodesics in S are depicted with hori-
zontal lines.

Given two points s1,s2 ∈ S , we let ψx, 0 ≤ x ≤ 1, be a
geodesic path in S such that ψ0 = s1 and ψ1 = s2 and its
length by d(s1,s2). Similarly, a geodesic in S starting at
s with initial velocity v will be denoted ψx(s;v). The map
exp: Ts(S ) → S given by v 7→ ψ1(s;v) is known as the ex-
ponential map at s.

2.4 Shape Statistics

The computation of geodesic paths in a shape space is useful
for several reasons. In addition to defining a shape metric,
it also leads to a notion of mean shape as follows. For a
collection of shapes s1,s2, . . . ,sm ∈ S , a mean is defined as:

µ = argmin
s∈S

m

∑
i=1

d(s,si)2 ,

where d(s,si) is the length of the geodesic connecting s and
si in S . µ is also known as an intrinsic mean [2], a Karcher
mean [8] or a centroid of a distribution. How to find µ? A
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Shape 1 Shape 2

Geodesic

Observation 1

Observation 2

Figure 3: A pictorial illustration of a shape space as a quo-
tient space of C . A geodesic in C that is perpendicular to the
equivalence classes (vertical lines) is also a geodesic in S ,
denoted by a broken horizontal line here.

gradient-based iterative search for µ is conducted as follows:
Let y be a current estimate of µ .

Algorithm 1 1. Find the geodesic paths ψ i(y,si) from y to
si, for i = 1,2, . . . ,m.

2. Compute their direction vectors or generators vi = ψ̇ i
0 ∈

Ty(S ) and compute the average v̄ = 1
m ∑m

i=1 vi.

3. Update y by flowing along a geodesic from y in the direc-
tion −2vm for unit time. That is, set y = ψ1(y;−2vm).

4. Repeat till v̄ = 0.

Once a mean shape is computed, the remaining proba-
bilistic formulation follows. Let Tµ(S ) be the space of vec-
tors tangent to the manifold S at µ . Although S is a curved
space, Tµ(S ) is a vector space of same dimension as S .
An exponential map takes elements of Tµ(S ) to S as fol-
lows: for any v ∈ Tµ(S ), define expµ(v) = ψ1(µ ;v), where
ψ is the geodesic starting from µ in the direction v. For el-
ements of S that are close to µ , exp−1

µ is well defined, and
often easily computed. The linearity of Tµ(S ) helps define
a probability distribution on S . First impose a probability
density function f (v) on Tµ(S ), and then project it on S
through the exponential map.

In particular, a second order statistic for a collection of
shapes can be described as follows. For a given collection
s1,s2, . . . ,sm ∈ S of shapes, let µ ∈ S be their mean as de-
fined above. Then, for each si, let vi ∈ Tµ(S ) be vector gen-
erating the flow from µ to si. By the definition of µ , the mean
of vi’s is zero. Their covariance matrix K ∈ R

m×m captures
the second order variation of si’s. Eigen decomposition of
K provides the principal shape variations in the given collec-
tion. For instance, if Vi’s are the principal eigenvectors of K,
then ψ1(µ ,Vi)’s provide the “eigen-shapes” of that family.

In the next section, we take a few specific examples of
shape representations that have been used frequently in the
literature.

3. APPROACHES TO SHAPE ANALYSIS

3.1 Landmark-Based Shape Analysis

The first formal mathematical theory of shapes is due to
David Kendall [11] and is referred to as a Procrustes shape
analysis. A remarkable body of work on analysis of shapes
also exists due to works of Bookstein [3], Mardia [4], Small
[15], and others. These studies share the property that objects
(and their shapes) are represented using a finite number of
landmarks (points in Euclidean spaces) and equivalences are
established with respect to shape preserving transformations.
Landmarks are chosen manually to capture shapes of objects
in images. For instance, in medical images, landmarks may
denote points of anatomical importance and are chosen by a
medical expert. The resulting quotient space, a Riemannian
manifold, is called the shape space.

The basic idea is to represent an object by k points, called
landmarks; these points can be on boundary or inside the
object which itself can be either two- or three-dimensional.
This collection of points is an element of C = Rnk where
n = 2 or 3. To remove similarity transformations, consider
the quotient space S = R

nk/T . Elements of S denote the
shapes of interest, and an analysis of shapes becomes anal-
ysis of elements of S . Translation and scaling transforma-
tions are easily removed from the representation by forcing
the centroid to be zero, and by forcing the vector of coordi-
nates to lie on a unit circle in R

nk. For example, let n = 2,
and equate C with C

k by considering the two coordinates of
a landmark as real and imaginary parts of a complex number.
Define C1 to be the subset of all zero-mean, unit complex
vectors in C ; it is called a preshape space. From any ob-
served shape s ∈ C

k, remove its mean and scale using

s = s− 1
k

k

∑
i=1

s(i), and s = s/‖s‖ .

The resulting s is an element of the preshape space C1. How-
ever, the removal of rotation group is not straightforward and
is performed as a minimization step. For any s1, s2 ∈ C1,
define the rotational alignment as:

θ̂ = argmin
θ∈S1

‖s1 − exp( jθ)s2‖ . (1)

Note that S
1 acts as an isometry on the set C

k. Defining
ŝ2 = θ̂ · s2, a geodesic path between s1 and ŝ2 in S is given
by ψx(s1, ŝ2) = cos(αx)u1 + sin(αx)u2, where

α = cos−1(〈s1 , ŝ2〉), u1 = s1, u2 =
ŝ2 −〈ŝ2 , s1〉

‖ŝ2 −〈ŝ2 , s1〉‖ . (2)

It follows that αu2 ∈ Ts1(S ) is the tangent direction such
that ψ1(s1;αu2) = s2.

Shown in Figures 4 and 5 is an example of this idea. Im-
ages shown in top panels of Figure 4 are used to extract land-
marks shown in the bottom panels. These panels show the
shape representations s1 and ŝ2 for the two objects present in
top panels. Figure 5 shows the geodesic path between these
two in S . The landmarks have been connected by solid lines
to improve display.

The Riemannian structure of S has been studied in sev-
eral places including [13, 10]. The particularization of in-
trinsic means to this shape space was done in [14]. A brief
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Figure 5: A geodesic path between the end shapes in landmark shape space. Landmarks have been connected by solid lines to
improve display.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

Figure 4: Landmark based shape analysis

summary follows: for a collection of shapes s1,s2, . . . ,sm in
S , let y ∈ S be an iterative estimate of the mean. Com-
pute the generators of geodesic flows from y to si using the
comment that follows Eqn. 2, and update according to Al-
gorithm 1. Given the collection s1,s2, . . . ,sm in S and their
mean µ , one can compute the covariance matrix K ∈ C

k×k

using the tangent vector vi ∈ C
k that satisfy ψ1(µ ;vi) = si,

i = 1,2, . . . ,m. Dryden & Mardia [4] also describe proce-
dures for testing hypotheses on S under some simple prob-
ability models.

An important strength of this approach is its computa-
tional efficiency and relative simplicity. These factors have
contributed in development of advanced statistical analysis
of shapes. In addition to means and covariances on shape
spaces, researchers have derived techniques for shape test-
ing, shape estimation, and shape extraction, all in statistical
frameworks. Another strength is their applicability in any di-
mensions, R

2, R
3, or even R

n for large n. An important limi-
tation of this approach is the need for pre-defined landmarks
for analyzing shapes. In practice, it is difficult to extract land-
marks automatically, and to register them across shapes, and
this limits the scope of this approach.

3.2 Diffeomorphisms for Shape Matching

Another fundamental idea for shape analysis comes from
Grenander’s theory of patterns [5]. In this approach, the
shapes are considered as points on an infinite-dimensional,
differentiable manifold, and variations between shapes are
modeled by actions of Lie groups on this manifold. Low-
dimensional groups, such as rotation, translation and scal-
ing, change the object instances keeping the shape fixed,
while the high dimensional groups, such as diffeomorphism,
smoothly change the object shapes ([17, 6]). This represen-
tation forms the mathematical basis of deformable templates
as treated in [5, 1].

A brief introduction to this approach follows: Let C be
the space of all images defined on a background space B;
C = R

B. B is usually a unit square in R
2 or a unit cube in

R
3. A space of shapes is given by C /T , where T is the group

of similarity transformations as earlier. Let G be the space of
diffeomorphic maps from B to itself. Then, G forms a group
action on C according to the map:

g · I(x) = I(g · x), g ∈ G , x ∈ B , I ∈ C ,

and G · I = {g · I : g ∈ G } defines the orbit of I under G.
Note that G acts on C in an isometry, assuming the usual
Euclidean metric on C . Let ψx denote geodesic flows in G
parameterized by x. The vector space Tid(G ), where id is the
identity map from B to itself, is given by the set of smooth
vector fields on B. The exponential map expid : Tid(G ) 7→ G
is given by expid(v) = ψ1(id;v).

A transformation between two images I1 and I2 can be
modeled by diffeomorphically aligning I1 to I2. The resulting
metric on the image space is given by:

d(I1, I2) = argmin
v

(
λ1‖I2 − expid(v) · I1‖2

C +λ2‖v‖2
V

)
, (3)

where ‖ · ‖C and ‖ · ‖V are generally chosen to be the Eu-
clidean norm on the image space and the space of vector
fields, respectively. The first term computes the smallest dis-
tance between the orbits of I1 and I2, while the second term
measures the work done in aligning I2 to I1 via a diffeomor-
phism. The second term is equal to the length of geodesic
from id to expid(v) in G . λ1 and λ2 are simply the weights
assigned to the two terms. This metric differs from the dis-
cussion in Section 2 in that the first term was always zero
there, and only the second term, corresponding to geodesic
lengths, played a role. Here, the pixel values in the image are
included in the metric, while landmark-based shape analysis
pixels values do not play any role.

Shapes here are considered implicitly through their full
images. For example, to compare the shapes of boundaries
of two 3D objects, one can embed each surface in a unit cube
in R3 and seek the diffeomorphism that transforms one (3D)
image into another. The distance between the two shapes is
now given by Eqn. 3.

A computational simplification is obtained in Eqn. 3
when the term ‖I1 − exp(v) · I2‖ is replaced by a function
involving the landmarks in I1 and I2. Let X1 be a set of land-
marks in I1 and X2 be the corresponding set of landmarks in
I2. Then, ‖I1− I2‖ is replaced by ‖X1−X2‖ to obtain a speed
up in computations. The speed comes from the fact that one
needs to evaluate v only at the landmark locations and not
on the whole B, as was the case earlier. However, this step
requires a pre-defined and pre-registered set of landmarks on
the two images. A strength of this approach is its applica-
bility to shapes in R

n for arbitrary n. This can also take into
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account the pixel values (or voxel values) while comparing
shapes of two objects. However, the computational cost of
finding the optimal match between two images is rather high.

3.3 Geometric Analysis of Shapes of Curves

There is an emerging family of techniques for studying the
shapes of connected curves in Euclidean spaces. Both the
geometry of curves and the geometry of spaces of curves play
a role in this shape analysis. A brief introduction follows.

Let α : R 7→R
2 denote the coordinate function of a curve

parameterized by arc-length τ , i.e., satisfying ‖α̇(τ)‖ = 1,
for every τ . A direction function s(τ) is a function satisfying
α̇(τ) = e j s(τ), where j =

√−1. s captures the angle made
by the velocity vector with the horizontal axis, and is defined
up to the addition of integer multiples of 2π . The curvature
function κ(τ) = ṡ(τ) can also be used to represent a curve.

Equivalence of shapes under similarity transformations is
imposed as follows. Scaling is resolved by fixing the length
of α to be 2π , and translations by representing curves via
their direction functions. The rotation variability is removed
by assuming that direction functions have a fixed average,
say π . Thus, we consider the space L

2 of all square integrable
functions s : [0,1] 7→ R. C is the subspace of L

2 consisting
of all (direction) functions satisfying the constraints

1
2π

∫ 2π

0
s(τ)dτ = π ;

∫ 2π

0
cos(s(τ))dτ = 0;

∫ 2π

0
sin(s(τ))dτ = 0 . (4)

The last two equations ensure that a curve is closed. It is
still possible to have multiple elements of C representing
the same shape. This variability is due to the choice of the
reference point (τ = 0) along the curve. For θ ∈ S

1 and
s ∈ C , define (θ · s) as a curve whose initial point (τ = 0)
is changed by a distance of θ along the curve. We term this
a re-parametrization of the curve. To remove the variabil-
ity due to this re-parametrization group, define the quotient
space S ≡ C /S

1 as the space of continuous, planar shapes.
For details, please refer to the paper [12].

Next, we focus on the problem of finding a geodesic
path between any two given shapes s1, s2 ∈ C . The main
issue is to find that appropriate direction v ∈ Ts1(C ) such
that a geodesic from s1 in that direction passes through s2
at time x = 1. In other words, the problem is to solve for a
v ∈ Ts1(S ) such that ψ0(s1;v) = s1 and ψ1(s1;v) = s2. One
can treat the search for this direction as an optimization prob-
lem over the tangent space Ts1(C ). The cost to be minimized
is given by the functional E(v) = ‖ψ1(s1;v)− s2‖2, and we
are looking for that v ∈ Tv1(C ) for which: (i) E(v) is zero,
and (ii) ‖v‖ is minimum among all such tangents. Since the
space Ts1(C ) is infinite dimensional, this optimization is not
straightforward. However, since v ∈ L

2, it has a Fourier de-
composition, and we can solve the optimization problem over
a finite number of Fourier coefficients. For any two shapes
s1,s2 ∈ C , we have used a shooting method to find the op-
timal v [12]. The basic idea is to choose an initial direction
v specified by its Fourier coefficients and then use a gradi-
ent search to minimize H as a function of the Fourier coeffi-
cients.

Shown in Figure 6 are two examples of geodesic paths
in C connecting given shapes. Drawn in between are shapes

corresponding to equally spaced points along the geodesic
paths.

Statistical analysis of shapes using this representation is
treated in the paper [12, 7].

4. CONCLUSION

In this paper we briefly introduce three different approaches
to shapes analysis, and highlight their common aspects and
their differences. A summary of comparisons is presented in
Figure 7.

One approach that we have not covered here is the level
set approach to image denoising, segmentation, and interpo-
lation. Here, shapes are studied as level sets of a real-valued
function defined on the image. Evolution of this function
takes place according a partial differential equation (PDE)
that is mostly driven two types of terms: one is data based
where the driving force is dependent on the desired image
pixels, and the second is a regularization term which penal-
izes the coarseness of this function. Different data terms and
regularization terms lead to different properties of the result-
ing flow. Evolution of curves in this way has also been called
active contours [9].
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Aspects Landmark Diffeomorphism Curve-Space
Based Based Geometry

Representation (C ) Location of landmarks Full image Direction functions of
C

k
R

B, B = [0,1]2 boundary curves in L
2(0,2π)

Preshape C1 unit vectors None closed curves
with centroid zero with average rotation π

Shape Space (S ) C1/S
1 C /T C1/S

1

Extrinsic Group (G ) None Diffeomorphism on B None

Geodesic Flow (ψ) one-parameter flow on one-parameter flow on one-parameter flow on
unit complex sphere G S

Tangent Vector (v ∈ Ts(S )) Tangent to unit sphere v ∈ Tid(G ), a vector field on B a function normal to cos(s), sin(s)

Metric Geodesic Length Geodesic Length on G Geodesic Length
on shape space plus a norm of Residual Image on shape space

Uses Pixel Values No Yes No

Figure 7: A summary of different approaches to shape analysis. This table is particularized to shape analysis in R
2.
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