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ABSTRACT
Most signal processing involves processing a signal without
concern for the quality or information content of that sig-
nal. In speech processing, speech is processed on a frame-
by-frame basis, usually only with concern that the frame is
either speech or silence. However, knowing how reliable the
information is in a frame of speech can be very important
and useful. This is where usable speech detection and ex-
traction can play a very important role. The usable speech
frames can be defined as frames of speech that contain higher
information content compared to unusable frames with refer-
ence to a particular application. We have been investigating a
speaker identification system to define usable speech frames
and then to determine a method for identifying those frames
as usable using a different approach. We present a simple
and intuitive definition and two methods to identify the de-
fined usable speech frames, which have resulted 78% and
68% success rates.

1. INTRODUCTION

In an operational environment speech is degraded by many
kinds of interferences. The operation of many speech pro-
cessing techniques are plagued by such interferences. Us-
able speech extraction is a novel concept of processing de-
graded speech data. The idea of usable speech is to identify
and extract portions of degraded speech that are considered
useful for various speech processing systems. Yantorno [1]
performed a study on co-channel speech and concluded that
the Target-to-Interferer Ratio (TIR) was a good measure to
quantify usability for speaker identification. However, the
TIR is not an observable value1 from the co-channel speech
data. A number of methods termed usable speech measures
which are indicators to the TIR have been developed and
studied under co-channel conditions [2, 3, 4, 5, 6]. These
measures are used as features in decision fusion systems to
make an overall decision [7, 8]. On similar lines the effects
of silence removal on the performance of speaker recognition
were studied in [9].

In all of the above methods mentioned, usability in
speech is considered to be application independent. How-
ever the concept of usable speech by definition is application
dependent, i.e. usable speech for speech recognition may not
be usable for speaker identification and vice versa. In this pa-
per we present an intuitive application dependent definition
to usability in speech, with reference to speaker identification

1TIR is not measurable from the signal as co-channel data recorded over
a single microphone are considered.

Figure 1: Block diagram of usable speech processing for
speaker identification.

and term it as SID-usable speech. The speaker identification
system under study uses the LPC cepstal features of 14 di-
mensions and a vector quantizer with 128 codebooks. We
also present two system which serves as a preprocessor to
the speaker identification system, to identify and extract the
SID-usable speech frames. A block diagram of the applica-
tion of usable speech for speaker identification is illustrated
in figure 1.

2. BACKGROUND

A brief background to the speaker identification system is
given in the following section. The usable speech is defined
in section 3. The preprocessor systems are presented in sec-
tion 4 and their experimental evaluation is presented in sec-
tion 5.

2.1 Vector Quantization

The speaker identification system, under study uses a vector
quantization classifier to build the feature space and to per-
form speaker classification [10]. The LPC-Cepstrum is used
as features with the Euclidean distance between test utter-
ances and the trained speaker models as the distance mea-
sure. A vector quantizer maps k-dimensional vectors in the
vector space Rk into a finite set of vectors Y ={yi: i = 1, 2,
..., N}. Each vector yi is called a codeword and the set of
all the codewords is called a codebook. In this system the
14th order LPC-Cepstral feature space is clustered into 128
centroids during the training stage which is referred as the
codebook.

2.2 Study of Distances from Speaker Models

Consider the testing stage in which the test utterance is di-
vided into ‘n’ frames and the Euclidean distance of the fea-
tures of ‘n’ frames with ‘m’ trained speaker models is de-
termined. For each speaker model, the minimum distance
obtained from the codewords is considered as the distance
from the model. Without loss of generality, consider a sys-
tem trained with two speakers and tested on one of the speak-
ers. This two speaker system provides a simple approach to
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better understanding how the system functions and to be able
to interpret the results due to its simplicity. One can expect to
have two distributions of the distances with significant differ-
ence in the expected values as shown in figure 2. The distri-
bution with a lower mean value corresponds to the identified
speaker. It should be pointed that there exists a good number
of frames which have equal distances for each model. It is
easy to realize that such frames contribute minimally to the
speaker identification process, and might even degrade the
operation with multispeaker trained system!
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Figure 2: The histogram of the distances obtained from the
classification matrix.

3. USABLE SPEECH DEFINITION

With the knowledge of the frame distances from the speaker
models, a frame of speech can be defined as usable in dif-
ferent ways. The simplest method is to look at the minimum
of the distances from different speaker models, and if it cor-
responds to the correct speaker, the frame can be termed as
usable. From the classification matrix the speech frames are
categorized into two classes and are labeled as “1” (usable)
and “0”(unusable). The labelling is done based on the fol-
lowing criterion –

φm(i) =

{

1, min(Di) = d(m, i);
0, min(Di) 6= d(m, i). (1)

where m is the speaker index, i is the frame index, Di is the
vector consisting of distance between frame i and the trained
speaker models and d is the classification matrix. In other
words, the criterion can be cited as: a frame of speech is con-
sidered to be usable if it yields the smallest distance measure
with the correct speaker and hence aids in the speaker identi-
fication operation, else it is considered unusable. One would
expect the performance of speaker identification would be
higher if only the usable speech frames are identified in a pre-
processor unit and fed into the speaker identification system.
Figure 3 shows the labelled speech data. The data labelled as
usable is represented in gray and the unusable is represened
in black. Note that it is hard to visually draw any conclusions
regarding the two classes of data.

3.1 Speaker Identification Performance Metric

The speaker identified corresponds to the model which has
the smaller mean value µc of the distances. If the next best
chosen model has a mean value of µc−1, the difference be-
tween the mean values of the best two speaker models chosen
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Figure 3: Labeled speech data: Usable speech is represented
in gray and the unusable is represented in black.

by test speech data serves as a metric to quantify the speaker
identification performance.

P1 = µc − µc−1 (2)

It would be evident that the speaker identification perfor-
mance had improved if the value of the metric is higher.

The performance of speaker identification can also be
quantified by comparing the amount of speech data P2 (secs)
required for correct identification, i.e., if less speech data is
needed for good identification.

To realize these performance metrics, speaker identifica-
tion experiments were performed with a priori knowledge of
the speakers. The speaker identification system was trained
on two speakers and tested on one of the speakers resulting
in a collection of usable frames. The defined SID-usable data
was used to test the speaker identification performance. The
performance was compared for two scenarios, 1) utterances
having a length equal 2 seconds and 2) usable speech seg-
ments, of average length 1.4 seconds. Data from the TIMIT
database with twenty-four speakers was used for the speaker
identification operation experiments and the results were an-
alyzed and are presented in Figure 4.

(a) (b)

Figure 4: Speaker identification performance comparison
with speech data and extracted usable frames. a) percent-
age accuracy in speaker identification and b) difference in
distance (P1) between the best two speakers selected. Note -
black vertical lines are standard error bars.

The system was succesively trained with two utterances
accounting all combinations of male / female speakers and
tested on a total of 384 utterances. The values represented in
the chart are the average values over all the test utterances.
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Observing Figure. 4 it can be noted that by using only us-
able speech segments, the speaker identification system has
higher performance with respect to both the metrics based
on five different pieces of information. First. the average
difference between the best two scores is higher with usable
speech case. Second, the amount of usable speech was ap-
proximately 30% less than the all frames data without the
systems performance being compromised. Third, the stan-
dard deviation of the usable speech difference scores were
smaller, indicating a higher confidence level in the identified
speaker. Fourth, for the usable speech case the percent cor-
rect was 100% versus 94% for the all frames case. Fifth,
the standard error for the percent correct is zero as compared
with for all frames condition. Therefore, it can be concluded
that using only usable speech improves the speaker identifi-
cation performance significantly.

4. USABLE SPEECH IDENTIFICATION

In an operational environment it will be essential that there
must be some way to identify SID-usable speech frames prior
to being input into the speaker identification process. Two
methods to accomplish this are presented here. The weighted
k-NN is used as a blind system performing classification. The
use of speech features with decision tree algorithms is moti-
vated by the fact that certain classes of speech contain more
information compared to the others.

4.1 Weighted k-NN Pattern Classifier

The k-Nearest Neighbor rule [11] is a very intuitive method
that classifies unlabelled samples based on their similarity
with samples in the training set. The a posteriori class prob-
abilities P(ωi|x) of test vector x for the usable and unusable
classes {ωi; i = 1,2} is determined by

P(ωi|x) =
1
di

.

ki

k
.p(ωi) (3)

That is, the estimate of the a posteriori probability that x

belongs to class ωi is merely the fraction ki of the sam-
ples within the k-nearest neighbors, that are labelled ωi and
weighed inverse proportionally to the average similarity mea-
sure di with each class samples. Further it is weighed with
respect to the class probabilities p(ωi). Usually for an even
class problem, k is chosen to be odd to avoid a clash. The
k-NN rule relies on the proximity measure and the Euclidean
distance is between the 14th order LPC-Cepstrum coeffi-
cients of the test pattern and the training templates was con-
sidered. The value of k was chosen as 9, as it resulted in
reasonable classification results.

4.2 Decision Trees

Prior studies [12] have shown unvoiced frames of speech do
not contribute significantly to speaker identification. This
study is to determine if there exists a relationship between
speech classes and their contribution to speaker identifica-
tion. For example, some classes of speech might not help the
speaker identification process such as nasals which have ze-
ros and hence would not give satisfactory results in speaker
identification, because the features used by the SID are based
on the autoregressive. The problem addressed in the next sec-
tion can be summarized as follows Identify speech classes

from speech data and study the relation between speech
classes and their contribution to speaker identification.

4.2.1 Speech Feature Detectors

Acoustic feature detection is the search for different (acous-
tic) features. Examples of acoustic features include voicing,
nasality and sonorance. While acoustic features are used to
differentiate between various segment categories, for exam-
ple, nasality may indicate the presence of nasal, or it may
indicate the presence of nasalized vowel. Eight feature de-
tectors were used in this research, which includes sonorant,
vowel, nasal, semivowel, voice-bar, voiced fricative, voiced
stop and unvoiced stop. Together with the feature detec-
tors, spectral flatness value was also considered which gives
a voiced/unvoiced decision. The computation of most fea-
ture detectors is based on a volume function. The volume
function represents the quantity analogous to loudness, or
acoustic volume of the signal at the output of a hypotheti-
cal band-pass filter. The volume function can be computed
using the following equation [13].

VF(i) =
1
Ni

√

B

∑
m=A

∣

∣

∣
Hi(e jπ m

256 )
∣

∣

∣

2
(4)

where i is the current frame index, Ni is the number of sam-
ples, A is the index of low cutoff frequency and B is the high
cutoff frequency. Each feature detection algorithm computes
a feature value, which is a ratio of volume functions com-
puted in two frequency bands. The feature values are con-
verted into a decision based on fixed thresholds to indicate
the presence of the corresponding feature in a given frame of
speech [13].

With the feature decisions, the class can be classified
through a sequence of questions, in which the next question
asked depends on the answer to the current question. This ap-
proach is particularly useful for such non-metric data, since
all of the questions can be asked in a “true/false” and does not
require any notion of a distance measure. Such algorithms
build a decision tree based on the entropy or the information
content of each feature. The traditional C4.5 algorithm [14]
was used for this work.

5. EXPERIMENTS AND RESULTS

A subset of speech data from the TIMIT database was used
for all the experiments. The experiments were designed to
use all the speech files for each speaker. The database con-
tains ten utterances for each speaker. Forty eight speakers
were chosen spanning all the dialect regions with equal num-
ber of male and female speakers. Of the ten utterances, four
utterances were used for training the speaker identification
system. Then the system was tested on the remaining six ut-
terances and the corresponding classification matrices were
saved. The speech data were labeled using the classification
matrix and equation given in section 3 for frames of speech,
40ms long.

The labeled data from the forty-eight speakers was used
to train and test the preprocessing systems. A subset of
thirty-six speakers were used to train the k-NN pattern clas-
sifier and the decision tree algorithms. The data from the rest
twelve speakers were used for testing and performance eval-
uation of the preprocessing systems. The performance of the
systems are tabulated in table
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Table 1: Performace evaluation of the preprocessing systems
in identification of usable speech frames.

Weighted k-NN Decision Trees
Usable hits 77.64% 67.99%
Usable miss 22.36% 32.01%
Unusable hits 67.99% 56.59%
Unusable miss 32.01% 43.41%

In table 1, a hit is defined as the number of usable frames
identified as correctly by the method and a miss is defined as
the number of usable frames declared as unusable.

5.1 Speaker Identification Improvement

The next step in using the usable speech concept for speaker
identification is to evaluate the speaker identification perfor-
mance with the preprocessor unit. The training and testing
data used for this purpose are the same as described in sec-
tion 5. However, the a priori knowledge of the speakers iden-
tity is ignored and the usable speech frames are extracted
using the schemes described in sections 3.1 and 3.2. The
speaker identification system was successively trained using
four training utterances and tested with utterances from one
of the speakers. The result of correct identification of speak-
ers with the weighted k-NN scheme was 97% and with the
decision tree scheme was 95%. These results can be com-
pared to 94% correct identification without the preprocessor
system.

6. CONCLUSIONS

A method to label frames of speech as SID-usable or SID-
unusable is defined. Two methods to identify the defined
SID-usable speech segments are also developed, from the ar-
eas of pattern recognition and data mining. We have shown
an 50% reduction in speaker identification errors by using the
usable speech concept. As a next step, various other classifi-
cation schemes are being developed and a general definition
for all applications is derived.
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