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ABSTRACT
Traditional signal processing architectures are usually de-
signed to perform well in large sample size situations, i.e.
when the number of observations increases to infinity while
their dimension remains fixed. In practice, though, these al-
gorithms must work with a relatively low number of samples,
and this degrades their performance significantly. This pa-
per proposes the use of general statistical analysis (a branch
of random matrix theory) as a systematic approach to de-
rive signal processing architectures that have an excellent
performance even when the number of samples and their di-
mension have the same order of magnitude. The basic ratio-
nale is to provide estimators that are consistent when both
the number of samples and their dimension increase without
bound at the same rate. We demonstrate the usefulness of
the approach deriving an estimator of the (asymptotically)
optimum loading factor in a minimum variance beamformer
for combating the finite sample size effect.

1. INTRODUCTION

Random matrix theory is a branch of multivariate statis-
tics that deals with the asymptotic behavior of the spec-
trum of random matrices as their dimensions increase with-
out bound. It is today well known that, for some random
Hermitian matrix models, the empirical distribution of eigen-
values tends almost surely to a non-random function as the
two dimensions of the matrix are driven to infinity at the
same rate. This fact has been extensively used in the physics
literature, and quite recently the theory has found its natural
application to the asymptotic modelling and performance
evaluation of certain large communications systems, such as
CDMA systems with a large number of users and spreading
factors, or the characterization of radiocommunication sys-
tems with multiple antennas at both the transmitter and the
receiver.

So far, the main application of random matrix theory has
been focused on the asymptotic analysis of large communi-
cations systems, assuming that two of the dimensions of the
system are driven to infinity at the same rate. The ratio-
nale behind the contributions in that direction follows a two
step procedure. First, the performance measure that needs
to be characterized is described in terms of the eigenvalues
(and sometimes also eigenvectors) of certain random matri-
ces. Thereafter, random matrix theory results that describe
the spectral behavior of such matrices are applied in order to
obtain a closed-form asymptotic expression for the quantity
that needs to be characterized. An interesting application
of these type of analysis to statistical array processing is the
performance evaluation of estimators and architectures in fi-
nite sample size situations. Assuming that the number of
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observations and the number of elements of the array are
both large and have the same order of magnitude, one can
sometimes derive closed form expressions for the asymptotic
performance of certain techniques based on array observa-
tions. This is in stark contrast to traditional asymptotic
performance characterization studies, that assume that the
observation dimension remains fixed while the number of ob-
servations is asymptotically large. Two-dimensional limits
constitute a better characterization of estimators that work
on finite sample supports, where the number of available
samples has the same order of magnitude as the observation
dimension.

In this paper, we take a different point of view to the fi-
nite sample size problem in array processing applications.
Rather than analyzing the behavior of architectures that
have been designed to perform well under the infinite sample
size situation, we raise the question of whether it is possible
to design such techniques in order to perform asymptotically
well when the number of observations and their dimension
have the same order of magnitude. In other words, we look
for a systematic way of designing estimators (and, in gen-
eral, any type of array processing architecture) that are con-
sistent, not only when the number of observations increases
without bound, but also when the observation dimension is
asymptotically large as well. In practice, one observes that
architectures that have these property need a much lower
number of samples to converge to an acceptable performance.
Since the asymptotic limits are two-dimensional by nature,
random matrix theory techniques seem to be the appropriate
background for the development of these doubly consistent
architectures. Indeed, General Statistical Analysis, a theory
founded by V.L. Girko in the late 80’s [1, 2] is a branch of
random matrix theory that provides a general framework for
deriving estimators that are consistent even when the num-
ber of estimated parameters increases at the same rate as
the number of observations.

2. RANDOM MATRIX THEORY AND
GENERAL STATISTICAL ANALYSIS

In this section we present the basic rationale behind gen-
eral statistical analysis and its application to array process-
ing problems. We will concentrate ourselves on the applica-
tion of this theory in the design of good estimators based on
the covariance matrix, denoted from now on as R ∈CM×M ,
where M is the observation dimension (typically the number
of sensors/antennas, if we are dealing with array observa-
tions). Let λ1 ≥ . . . ≥ λM > 0 and e1, . . . , eM denote the
M eigenvalues and associated eigenvectors of R, assumed
positive definite. We start with the definition of a generic
spectral function of the eigenvalues of the covariance matrix
R, i.e.

F (λ) =
MX
k=1

ϕkI{λk≤λ},
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where I{λk≤λ} is the indicator function for the event
{λk ≤ λ} and ϕk, k = 1 . . .M , are weighting values that
have certain regularity properties (cf. [2]). Note that if we
fix ϕk = M−1, k = 1 . . .M, then F (λ) becomes the empiri-
cal distribution of the eigenvalues of R, i.e. the eigenvalue
counting function that, for each λ, gives the percentage of
eigenvalues of R that are lower than or equal to λ. We de-
fine the real Stieltjes transform1 associated with the spectral
function F (λ) as

m(x) =
1

M

MX
k=1

ϕk
1 + xλk

, x ∈ R+. (1)

Observe that, if we fix ϕk = M−1 for all k, the Stieltjes
transform mM(x) turns out to be equal to

s(x) = m(x)|ϕk=M−1 =
1

M
tr
£
(IM + xR)−1

¤
, (2)

whereas, if we set ϕk = aHeke
H
k b, where a and b are two

M×1 complex vectors and (·)H denotes transpose conjugate,
we will have

t(x;a,b) = m(x)|ϕk=aHekeHk b = a
H [IM + xR]−1 b. (3)

Now, there are a lot of quantities in communications and
signal processing applications that can be expressed in terms
of Stieltjes transforms of the type (2) and (3). For example,
the (i, j)th entry of the inverse correlation matrix R−1 can
be expressed as©
R−1

ª
i,j
= lim

x→∞
xuHi [IM + xR]−1 uj = lim

x→∞
xt(x;ui,uj),

where ui is an all-zeros M × 1 column vector with a 1 in
the ith position. On the other hand, quadratic forms such
as aHRkb, with k ∈ Z and a, b two M × 1 column vec-
tors, arise quite naturally in spectral estimation applications.
These quantities can also be expressed in terms of the Stielt-
jes transform t(x;a,b). Indeed, if k > 0,

aHRkb =
(−1)k
k!

·
∂k

∂xk
a [IM + xR]−1 b

¸
x=0

.

Other relationships can be found for successive powers of the
inverse covariance matrix (i.e. k < 0).

Let us assume that we want to estimate a given quan-
tity q that depends on the covariance matrix R through dif-
ferent combinations of Stieltjes transforms such as the ones
shown above. The covariance matrixR is generally unknown
and must be estimated from the observed data, denoted by
x(1), . . . ,x(N) (all of them independent M × 1 column vec-
tors). Traditional approaches would simply replace the co-
variance matrix R with the corresponding sample estimate

R̂ =
1

N

NX
i=1

x(i)xH(i).

If observations are circularly symmetric, independent and
identically distributed (i.i.d.) with zero mean and covari-
ance matrix R, one can model the sample covariance matrix
as R̂ = R1/2UUHR1/2 with R1/2 the positive Hermitian

1This definition is a bit different from the classical complex-
valued Stieltjes transform usually employed in random matrix the-
ory. This definition will be more convenient for the presentation
of General Statistical Analysis.

square root of R and U an M × N matrix with i.i.d. sym-
metric entries having zero mean and variance 1/N . Now,
even though R̂ is a consistent estimation of R as the num-
ber of observations N increases without bound while their
dimension M remains constant (because UUH → IM in
probability), that estimation might not be the best option
when N and M have the same order of magnitude. For
example, one can show that as N,M → ∞ at the same

rate2 ,
¯̄̄
aR̂

−1
b− (1− c)−1aR−1b

¯̄̄
→ 0 in probability, where

c = M/N . Hence, aR̂
−1
b is clearly an inconsistent estima-

tor of aR−1b when N,M →∞ at the same rate. Note that,
instead of estimating R−1 with R̂−1, one could have used
(1− c)R̂−1 as an estimator for R−1. This second estimator
is consistent regardless of whether M scales up with N or
not, and consequently will have a better performance than
the traditional counterpart in finite sample size situations.
This type of modification can be generalized to more com-
plicated estimators, using the theory of General Statistical
Analysis.

Assume as before that the quantity q that needs to be
estimated can be expressed in terms of Stieltjes transforms
of the type shown above. The basic rationale behind Gen-
eral Statistical Analysis is the fact that, in order to find a
consistent estimator of q as N,M → ∞ (number of obser-
vations and their dimension increase without bound at the
same rate), one must only find a uniformly consistent es-
timator of the generic Stieltjes transform m(x) under the
same asymptotic conditions. Girko [1, 2] proved that, for
the model of R̂ considered here, such an estimator exists
and is given by3

m̂(x) =
1

M

MX
k=1

ϕk

1 + θ (x) λ̂k
, (4)

where λ̂k are the eigenvalues of the sample covariance matrix
R̂ and the function θ (x) is the unique positive solution to
the following equation

θ (x)

·
1− c+ c

1

M
tr

·³
IM + θ (x) R̂

´−1¸¸
= x, x > 0. (5)

From this basic estimator of the real generic Stieltjes trans-
form in (1) one can construct estimators of more complicated
quantities that are consistent even when the observation di-
mension increases to infinity with the sample size. Moreover,
these estimators have the following nice properties (see fur-
ther [2]):
1. They are derived without any assumption on the ac-
tual distribution of the observations (other than zero mean,
bounded moments and circularity) and are only based on the
inner structure of the random matrix R̂.
2. If the sample size increases and the observation dimen-
sion remains constant (c → 0), the estimator reverts to its
"traditional" counterpart. Note that θ (x)→ x when c→ 0
in (5).
3. Under some mild regularity conditions, m̂(x) is asymp-
totically (as M,N →∞) Gaussian-distributed [1].

Next, we give an application example in array signal
processing that demonstrates the usefulness of general statis-
tical analysis: the determination of the asymptotically op-
timum loading factor for combating the finite sample size
effect in minimum variance (MV) beamformers.

2This only holds under some regularity conditions on a, b.
3This estimator is generally referred to as "G2-estimator" when

used to estimate (2), or "G25-estimator" when used to estimate
(3). Note that the estimator given here is valid when the sample
covariance matrix has the structure presented above.
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3. MV BEAMFORMING AND ASYMPTOTIC
OUTPUT SINR WITH DIAGONAL LOADING

Spatial reference beamforming techniques are filtering archi-
tectures that exploit the knowledge of the angular informa-
tion of the desired source in order to enhance the response
towards a desired direction of arrival (DOA) while nulling
out the contribution from interfering components [3]. Ba-
sically, the spatial filters are designed to minimize the out-
put power while preserving a certain response towards de
desired DOA; hence the name "minimum variance" beam-
formers. If sd ∈ CM×1 is a column vector containing the
spatial signature of the desired signal, and R̂ ∈ CM×M de-
notes the sample spatial covariance matrix obtained from N
snapshots, the minimum variance beamformer is designed as
w = R̂

−1
sd (up to a constant value). We assume that the

number of observations is higher than the number of elements
of the array, i.e. N > M .

MV beamformers are known to suffer from two different
impairments that might cause a severe performance degrada-
tion in practical implementations. First, an imprecise knowl-
edge of the spatial signature of the desired signal (caused,
for example, by lack of accuracy in the DOA information or
small calibration errors across the array), might potentially
lead to desired signal cancellation effects that corrupt the
performance of the MV beamformer, sometimes making it
even worse than traditional phased-array spatial filter. Sec-
ond, if the number of samples available at the receiver is
not sufficiently high, the response of the spatial filter can be
very different from the desired one, and consequently the fil-
ter might randomly enhance and suppress the response in the
wrong DOAs. The degradation due to this effect is partic-
ularly important in arrays with a large number of elements,
where the number of snapshots needed to achieve conver-
gence of the filter weights is usually too high.

Diagonal loading (i.e. adding a constant to all the ele-
ments of the diagonal of the sample covariance matrix) has
long been used as a method to improve the robustness of
the MV beamformer against these two types of impairments.
Indeed, it has been shown that diagonal loading is the nat-
ural extension of classical MV beamformers under quadratic
constraints or incorporating some degree of uncertainty of
the steering vector (see [4, 5, 6, 7] and references therein).
In parallel with that, diagonal loading has also been used to
improve the performance of the MV beamformer under finite
sample size situations [8, 9, 10]. This second application of
diagonal loading is far less explored, and results on the op-
timum choice of the loading factor for combating the finite
sample size effect are in fact very scarce [4, p.751]. This
has motivated the use of rather adhoc methods for fixing the
loading factor in low sample size situations. For instance,
in [4, p.748] the author suggests setting the loading factor
10dB above the minimum eigenvalue of the sample correla-
tion matrix, while in [11] the diagonal load is fixed equal to
the standard deviation of the diagonal entries of the sample
covariance matrix.

In a recent paper [12], an asymptotic expression of the
output SINR of a diagonally loaded beamformer when both
the sample size (N) and the number of antennas (M) increase
without bound at the same rate was presented4 . Note that,
because the ratio M/N is constant, the asymptotic expres-
sion is a good approximation of the non-asymptotic reality.
Assuming M/N = c so that 0 < c < 1, the asymptotic out-
put SINR had the same asymptotic behavior (in probability)

4To the best of our knowlege, neither the distribution nor the
expectation of the output SINR of the diagonally load beamformer
with perfect steering and finite suport have been derived. Only
some asymptotic approximations as N → ∞ for fixed M can be
found in the literature [13, 14].

as the deterministic quantity SINR = (q (α)− 1)−1, where

q (α) =
1

1− cξ (α)

sHd (R+ γIM)
−1R (R+ γIM)

−1 sd

Ps
¡
sHd (R+ γIM)

−1 sd
¢2 , (6)

ξ (α) =
1

M

MX
k=1

µ
λk

λk + γ

¶2

and γ = α [1 + cb] , with b the unique positive solution to the
following equation

b =
1

M

MX
k=1

λi [1 + cb]

λi + α [1 + cb]
, (7)

being λ1 . . . λN the eigenvalues of the true covariance matrix
R as before. A reasonable way of fixing the loading factor
would be to choose the value of α that minimizes (6). In
practice, however, the covariance matrix R is unknown, and
therefore so are q (α) and SINR. Hence, in order to give
an estimation of the asymptotically optimum loading fac-
tor α, one must first derive an estimation of either one of
these functions of α. A traditional approach would be to
replace R with R̂ and the true eigenvalues λ1 . . . λN with
the eigenvalues of the sample covariance matrix, denoted by
λ̂1 . . . λ̂N . However, since R̂ and λ̂1 . . . λ̂N are only consis-
tent estimators of their true counterparts when N → ∞
while M remains constant, the obtained estimator will not
be well behaved in situations where both parameters (N and
M) have the same order of magnitude (namely, the situation
where diagonal loading is actually useful!). Next, we provide
an estimator that is consistent even when M,N →∞ at the
same rate. Because of this property, this estimator will give
very good results even when M and N have the same order
of magnitude.

In order to derive such an estimator, observe that one can
express the function q (α) as an arithmetic combination of
the different Stieltjes transforms and their derivatives. Using
(4) as an estimator of these Stieltjes transforms, one can get
to the following expression for the consistent estimation (as
M,N → ∞) of the asymptotically optimum loading factor
α (see [15] for details):

α̂ = argmin
α

q̂ (α) (8)

q̂ (α) =
1

1− cϕ(α)

sHd

³
αIM + R̂

´−1
R̂
³
αIM + R̂

´−1
sd

Ps

µ
sHd

³
αIM + R̂

´−1
sd

¶2
where

ϕ(α) = 2− 2α 1

M
tr

·³
αIM + R̂

´−1¸
+

− c

µ
1

M
tr

·
R̂
³
αIM + R̂

´−1¸¶2
.

Hence, in order to obtain an appropriate estimation of the as-
ymptotically optimum loading factor, one must first evaluate
the function q̂ (α) in (8) and search for its global minimum
(one-dimensional search). Despite its complicated appear-
ance, the estimator can be expressed in very simple terms
as a combination of the eigenvalues of the sample covariance
matrix and the product of its eigenvectors with the spatial
signature sd.
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4. NUMERICAL VALIDATION

To illustrate the performance of the presented estimator, we
consider here a scenario with five directional narrowband
sources with received power 20dB above the noise floor, im-
pinging on a uniform linear array of 10 elements separated
half a wavelength apart. In order to create variability in
the scenario, we generated the directions of arrival of the
different users as independent random variables uniformly
distributed on [−60o, 60o]. Figure 1 represents the cumula-
tive distribution function of the SINR at the output of a MV
beamformer for different diagonal loading methods. Method
1 fixes the diagonal load as 10 times the smallest eigenvalue
of R̂ as proposed in [4, p.748], and Method 2 sets the di-
agonal load equal to the standard deviation of the diagonal
elements of R̂ as proposed in [11]. We give simulation re-
sults for N = 20 and N = 200 snapshots. Observe that the
proposed method gives significant gains in terms of output
SINR with respect to both Method 1 and Method 2 in the
performance region of interest. These gains are especially
high (of up to 4dB) in the low sample size situation. Of
course, these gains come at the expense of higher complexity
in the estimation of the loading factor. Note also that there
is a small region around 3dB where the proposed method is
slightly outperformed by the other two; the loss is, however,
insignificant compared to the high gain that can be obtained
at more reasonable values for the output SINR. For the sake
of clarity, we do not show in Figure 1 the performance of the
estimator that fixes the loading factor by direct minimization
of q(α) in (6), replacing the true values with their sample es-
timates without applying General Statistical Analysis. It can
be seen [15] that such an estimator gives completely wrong
values for the optimum loading factor, and is widely outper-
formed by the other three. This illustrates the usefulness of
General Statistical Analysis in situations where the sample
size and the observation dimension have the same order of
magnitude.
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Figure 1: Distribution function of the output SINR in an
array ofM = 10 elements with different methods of diagonal
loading and different values of the number of samples.

5. CONCLUSIONS

In this paper, we propose the use of General Statistical
Analysis as a tool for designing array processing architec-
tures and estimators that are consistent even when the ob-

servation dimension increases at the same rate as the simple
size. This property guarantees their good behavior when the
number of samples has the same order of magnitude as the
number of elements of the array. To illustrate the usefulness
of the approach, we have derived a new estimator of the (as-
ymptotically) optimum loading factor in MV beamformers
for perfectly known desired signal spatial signature operat-
ing under finite sample size restrictions. Simulation results
illustrate high gains with respect to traditional approaches,
especially in low sample size situations.
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