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ABSTRACT 
 

Sub-band speech recognition approaches have been 
proposed for robust speech recognition, where full band 
speech are divided into several sub-bands and then 
likelihood or cepstral vectors of the sub-bands are merged 
depending on their reliability. In this paper, we use 
wavelet transform for splitting of input speech into sub-
bands in two ways: equal bandwidths for sub-bands and 
dyadic bandwidths for sub-bands. We also use wavelet 
thresholding techniques to determine a criterion for 
reliability of sub-bands and use it as weight in sub-band 
recombination. 

 
 

1. INTRODUCTION 
 

It is well known that current ASR systems don't work as 
well as human perception. Fletcher and his colleagues [1] 
suggested that in human auditory perception, the linguistic 
message gets decoded independently in different 
frequency sub-bands and the final decoding decision is 
based on merging the decisions from the sub-bands. ASR 
machine could benefit if it had the human ability to de-
emphasize the unreliable frequency sub-bands. Toward 
this end, many ways recently proposed to utilize 
information of sub-bands [3,4].  
Two modes of sub-band approaches have been applied: 
Likelihood recombination (LC) and feature recombination 
(FC) [2]. In LC, each sub-band is modeled independently. 
During recognition process, different speech classifiers 
are applied independently to each sub-band and each 
classifier provides a set of likelihood scores. Then all 
classifier outputs are combined to obtain global 
recognition likelihood. Various kinds of recombination 
modules such as linear combination and neural 
combination were considered for recombination of 
likelihood scores in each sub-band [3,4]. 
In FC a single feature vector is composed by joining the 
sub-band feature vectors together. However, results show 
that both FC and LC don't perform well for clean speech. 
They cause further degradation recognition for clean 
speech [3,8], mainly because correlations across the sub-
bands are lost in both approaches. 

From a psycho-acoustic point of view, one can expect that 
some frequency bands and some models are more robust to 
noise than others. When recombination is done in clean 
speech, it can not make use of this intrinsic robustness of the 
bands and of the models. The only way for the system to 
learn which bands and models are the most robust and to 
exploit this information, is to be confronted with noisy 
speech. This can guide us to use sub-band approaches for 
robust speech recognition. 

 
Figure 1. General architecture of likelihood recombination  

 
In this paper, we use a multi-band speech recognition system 
as Fig. 1 [3]. The speech signal is divided into four 
frequency bands and independent processing is applied in 
each sub-band. Speech signal is first passed to a wavelet 
transform based filter bank which splits it into four sub-
bands. The signal in each sub-band is encoded into a stream 
of acoustic vectors which are passed to a HMM based 
recognition system. The generated likelihoods by HMMs are 
given to a recombination module that delivers a unique 
answer to the recognition task. In this paper, we propose a 
new technique for likelihood recombination based on 
wavelet thresholding technique.  
In section 2, we describe our speech decomposition method 
using wavelet transform. In the following sections, our 
proposed method for likelihood recombination are presented 
and compared for different noisy conditions. 
 

2.  WAVELET TRANSFORM AND  
SPEECH DECOMPOSITION  

 

Wavelet transform has been intensively used in various 
fields of signal processing. It has the advantage of using  
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variable size time-windows for different frequency bands. 
This results in a high frequency resolution in low bands 
and low frequency resolution in high bands. 
Consequently, wavelet transform is a powerful tool for 
modeling non-stationary signals like speech that exhibit 
slow temporal variations in low frequency and abrupt 
temporal changes in high frequency. These properties can 
guide us to use wavelet transform in sub-band speech 
recognition. In this way, we select discrete wavelet 
transform to avoid complex design of filters that perform 
multi-band analysis.  
A typical multi-level analysis for discrete wavelet 
transform (DWT) is depicted in Fig. 2. The decomposition 
filters, DL and DH, were adopted to split the input speech 
signal into two overlapped and equally spaced frequency 
bands in first level, where DL is low-passed and DH is 
high-passed. We then decimate each band by a factor 2, 
such that spectrum of each band is expanded to fill up the 
full frequency scale [9]. 

 
Figure 2. Block diagram of multi-level discrete wavelet 

analysis 
 

One important problem in sub-band speech recognition is 
definition of frequency sub-bands and the frequency range 
spanned by each sub-band [3,4]. Narrow sub-bands may 
allow greater flexibility in isolating frequency-localized 
degradation, but the class discrimination within the sub-
band decreases with decreasing amount of information in 
narrower sub-bands [4]. If we use multi-level wavelet 
transform for speech decomposition, we have a high 
frequency resolution in low bands and low frequency 
resolution in high bands as Fig. 2 shows. In this way, we 
obtain four sub-bands with dyadic bandwidths. 
Fig. 3 shows the block diagram of another method for 
splitting input speech into four frequency bands. We use 
single-level discrete wavelet transform(SDWT) to split 
input speech signal into two frequency bands and use 
SDWT again to split each frequency bands into two sub-
bands. At last, we obtain four sub-bands with equal 
bandwidths.  
 

 
Figure 3. Block diagram of splitting method into 

 4 bands- equal bandwidths 
 
2.1. Wavelet Thresholding 
 

Removing noise components by thresholding the wavelet 
coefficients is based on observation that in many signals(like 
speech), energy is mostly concentrated  in a small number of 
dimensions. The coefficients of these dimensions are 
relatively large compared to other dimensions or to any other 
signal (specially noise) that has its energy spread over a 
large number of coefficients. Hence, by setting smaller 
coefficients to zero, one can eliminate noise while 
preserving the important information of original signal [10]. 
Consequently, wavelet coefficients are compared to a 
threshold and it is determined which coefficients must be set 
to zero. The proper value of threshold can be determined in 
many ways. Donoho [10] has suggested the following 
relation for determining threshold value: 

)log(2 NT σ=  (1) 
where T is the threshold value and N is the length of noisy 
signal.  
Thresholding can be performed as Hard or Soft thresholding 
that are defined as follows respectively: 
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where Y is wavelet coefficients of noisy signal. 
 

3. LIKELIHOOD RECOMBINATION 
 

Likelihoods returned by HMMs can be recombined using 
sub-band weighting as the following equation [3]: 

∑
=

=
B
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where S represents the score of utterance x with model M. 
P(x | M, b) is the likelihood returned by the HMM 

346



corresponding to the model M in sub-band b. B is number 
of sub-bands. 
One problem in sub-band weighting approach is the 
estimation of weighting factors Mb ,α . Many researchers 
use neural networks for non-linear estimation of weights 
[2,3]. They don't use any information of sub-bands in 
weighting directly. The weighting factor can be set if the 
reliability of the sub-bands is known. When characteristic 
of the noise signal is unknown, determining of this 
reliability is important. SNR can be an important factor 
for determining reliability of a sub-band under noise 
conditions [2,4]. Good SNR estimation is not simple and 
this problem can limit its application in a real world 
condition. In another method, entropy at the output of the 
sub-band recognizer (hybrid ANN/HMM), is computed 
and used as a measure of confidence to give weight to a 
recognizer output [6]. This method is very complicated for 
continuous density hidden Markov model (CDHMM), 
because entropy computation of CDHMM is very difficult 
[7]. 
We also propose a novel sub-band weighting based on 
wavelet thresholding to obtain a substitute for SNR, in 
determining reliability of sub-bands. We use Donoho's 
suggested wavelet thresholding technique in each sub-
band to compute number of wavelet coefficients that are 
greater than threshold value. The ratio of this number to 
number of all coefficients in sub-band, can be used as a 
criterion for determining reliability of sub-band. We name 
this ratio as WTH rate and use it as Mb ,α  in equation (4). 
We don't change wavelet coefficients in sub-bands by 
thresholding and only compute WTH rate. In this way, the 
kind of thresholding (soft or hard) is not important in 
computing of this ratio. But WTH rate can be affected by 
threshold determination method. 
 
 

4. EXPERIMENTS AND RESULTS 
 

Our experimental environment is as follows. The 
sampling rate of speech signal is 16 KHz. The test speech 
includes Persian numbers 1 to 10 which are recorded in a 
clean environment. There are 15 utterances for each 
number. Our recognition system is CDHMM with 6 state 
and 2 Gaussian mixtures per each state. We choose 3 type 
of additive noise: white, pink and Volvo noises from 
NOISEX92 database. We use 30 ms frames and 15 ms 
overlap and Hanning window in each sub-band. Our 
feature vector contains 12 MFCC coefficients and their 
first order derivative and logarithm of energy and its first 
order derivative. Hence, length of feature vector is 26. 
Under these conditions, results of full band noisy speech 
recognition  are shown in Table 1. 
As indicated before, we use wavelet transforms for 
splitting input speech into 4 sub-bands in two ways: equal 

 
 SNR=30 SNR=10 SNR=0  
Pink noise 98.7% 36% 18% 

Volvo Noise 99.3% 98% 86% 
White Noise 97.3% 28.7% 14.7% 

Table 1- Recognition rate for full band  noisy speech under 
different kind of noise and noisy conditions 

 
bandwidths for sub-bands (0-2 kHz, 2- 4 kHz, 4-6 kHz, 6-8 
kHz ) and dyadic bandwidths for sub-bands ( 0-1 kHz , 1-2 
kHz, 2-4 kHz, 4-8 kHz ). 5'Th order Daubechies wavelet is 
used as wavelet decomposition filter because of its 
smoothness and compact support. We use 3 methods for sub-
band weighting: equal weighting (mean of likelihood scores 
as global likelihood score) and WTH rate (as indicated in 
section 3) and SNR of sub-bands as their weights.  
Results of sub-band speech recognition under pink noise are 
shown in Tables 2, 3. Table 2 shows recognition results for 
dyadic bandwidths and Table 3 shows recognition results for 
equal bandwidths. In case of SNR and WTH weighting 
method ,as shown in these tables, dyadic bandwidths 
outperforms equal bandwidths. This result adapt to human 
ear nature. WTH weighting method shows good and 
acceptable performance in comparing to SNR weighting 
method. it may be have better performance with another 
wavelet thresholding  techniques. 
 

 SNR=30  SNR=10 SNR=0 
Equal weighting  92% 29.3% 20% 
SNR weighting 94% 62.7% 14% 
WTH weighting 94.7% 53.3% 14.7%  

Table 2- Recognition rate for noisy speech (Pink noise) 
-dyadic bandwidths 

 
 SNR=30  SNR=10 SNR=0 
Equal weighting 89.3% 44% 9.3% 
SNR weighting 96%  52% 10% 
WTH weighting 91.3% 46% 10.7% 

Table 3- Recognition rate for noisy speech (Pink noise) 
- equal bandwidths 

 
Tables 4,5  shows results of sub-band speech recognition 
under Volvo noise. Recognition results for dyadic 
bandwidths are shown in Table 4 and recognition results for 
equal bandwidths are shown in Table 5. Similar to pink 
noise, dyadic bandwidths have better performance than equal 
bandwidths. In this case, WTH weighting method has same 
performance of SNR weighting method. 
Many researchers have used sub-band speech recognitions  
is presence of white noise [2,4] and reported results . Tables 
6,7 shows results of sub-band speech recognition under 
white noise. Recognition results for dyadic bandwidths are 
shown in Table 6 and recognition results for equal 
bandwidths are shown in Table 7. As these tables show, 

347



 SNR=30  SNR=10 SNR=0 
Equal weighting 96.7% 94.7% 90.7% 
SNR weighting 96.7% 96.7% 95.3% 
WTH weighting 97.3% 96.7% 95.3% 

Table 4- Recognition rate for noisy speech (Volvo noise) 
-dyadic bandwidths 

 
 SNR=30  SNR=10 SNR=0 
Equal weighting 96% 94.7% 88% 
SNR weighting 96.7% 94% 92% 
WTH weighting  97.3% 96% 92.7% 

Table 5- Recognition rate for noisy speech (Volvo noise) 
-equal bandwidths 

 
dyadic bandwidths have very better performance than 
equal bandwidths in case of SNR and WTH weighting. In 
our experiments, sub-band speech recognition, shows a 
good robustness in presence of white noise. WTH 
weighting method also shows an acceptable performance. 
 

SNR=0  SNR=10 SNR=30  
20% 20% 86% Equal weighting 
40% 80.7% 94.7% SNR weighting  

33.3% 62% 92% WTH weighting 
Table 6- Recognition rate for noisy speech (White noise) 

-dyadic bandwidths 
 

SNR=0  SNR=10 SNR=30  
16%  35.3% 87.3% Equal weighting 
16% 59.3% 96.7% SNR weighting  

15.3% 52% 90%  WTH weighting 
Table 7- Recognition rate for noisy speech (White noise) 

-equal bandwidths 
 

Fig. 4 displays results of sub-band recombination methods 
for different kind of noise, where SNR is 10 db and dyadic 
bandwidths is used. It can be seen that WTH weighting 
method has a performance near to SNR weighting 
method. Fig. 5 displays effect of dyadic bandwidths and 
equal bandwidths in sub-band speech recognition, where 
noise is pink and WTH weighting method is used.  
 

5. CONCLUSION 
 

We used discrete wavelet transform and its multi-
resolution property for robust sub-band speech recognition 
to split input speech into four sub-bands. Our recognition 
results under different kind of noise and noisy conditions, 
show that choosing dyadic bandwidths have better 
performance than choosing equal bandwidths in sub-band 
recombination. This result adapts to way which human ear 
recognizes speech and shows a useful benefit of dyadic 
nature of multi-level wavelet transform for sub-band 
speech recognition. We also defined a new weighting  

 
Figure 4. Comparison of full band and sub-band 

recombination for different kind of noise 
 

 
Figure 5. Comparison of equal bandwidths and dyadic 

bandwidths for Pink noise and WTH weighting 
 

factor based on wavelet thresholding: WTH rate. In most of 
cases, it has acceptable performance in comparing to SNR 
weighting factor. It can be improved by choosing a more 
proper threshold value. In this way, we can obtain a reliable 
substitute for SNR in determining reliability of sub-bands. 
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