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ABSTRACT

The two-dimensional autoregressive modelling problem is
attempted using a combination of the Yule-Walker system
of equations and the Yule-Walker system of equations in the
third-order statistical domain. A novel weighting scheme
that relates the contribution of the two systems is proposed
and some simulations results are provided to verify the im-
proved estimations.

1. INTRODUCTION

Two-dimensional (2-D) autoregressive (AR) modelling has
been used as one of the methods to characterise textured
images [2][3]. Each texture is described by a different set
of 2-D AR model coefficients. In the literature, two of the
most commonly used methods for solving the AR model co-
efficients estimation problem are the Yule-Walker system of
equations (YW) and the Yule-Walker system of equations in
the third-order statistical domain (YWT). The YW method
uses the second-order moment samples of the signals, which
are sensitive to the external Gaussian noise. However, the
estimated coefficients arisen from a number of realisations
have lower variances [7][8]. The YWT methods employs the
third-order moments, which result in that the external Gaus-
sian noise can be eliminated, but the variances computed
from a number of realisations are higher than the variances
obtained from the YW method. In [1], the authors proposed
a method which uses both the YW and YWT. The weight-
ing matrix that related the contribution of the two systems
was taken to be an identity matrix, i.e., both second-order
and third-order moment samples contribute equally. From
the simulations, it was found that the estimation results are
not close to the original values for low SNR (signal-to-noise)
systems. In this paper, a new weighting scheme is proposed,
which results in improved AR model coefficients estimation
in both low and high SNR systems.

2. TWO-DIMENSIONAL AUTOREGRESSIVE
MODEL

Let us consider a digitised image x of size M×N. Each pixel
of x is characterised by its location [m,n] and can be repre-
sented as x[m,n], where 1 ≤ m ≤ M, 1 ≤ n ≤ N and x[m,n]
is a positive intensity (gray level) associated with it. A two-
dimensional (2−D) autoregressive (AR) model is defined as
[4]

x[m,n] = −
p1

∑
i=0

p2

∑
j=0

a[i, j]x[m− i,n− j]+w[m,n], (1)

where [i, j] 6= [0,0],
a[i, j] is the AR model coefficient,
w[m,n] is the input driving noise, and
p1 × p2 is the order of the model.

The driving noise, w[m,n], is assumed to be zero-
mean, i.e., E{w[m,n]} = 0 and non-Gaussian. The AR
model coefficient a[0,0] is assumed to be 1 for scaling
purposes, therefore we have [(p1 +1)(p2 +1)−1] unknown
coefficients to solve.

An external zero-mean Gaussian noise, v[m,n], is added
onto the system. Mathematically the new system can be
written as

y[m,n] = x[m,n]+ v[m,n]. (2)
The signal-to-noise ratio (SNR) of the system is calculated
by

SNR = 10log10
σ 2

x

σ 2
v

dB (3)

where σ 2
x is the variance of the signal and

σ 2
v is the variance of the noise.

3. YULE-WALKER SYSTEM OF EQUATIONS

The conventional Yule-Walker equations are given by [4][8]
p1

∑
i=0

p2

∑
j=0

a[i, j]ryy[i− k, j− l] = −ryy[−k,−l] (4)

for k = 0, · · · , p1 and l = 0, · · · , p2,
where [k, l] 6= [0,0], [i, j] 6= [0,0],

ryy[i, j] = E{y[m,n]y[m+ i,n+ j]},
a[i, j] is the AR model coefficient,
1 ≤ m ≤ M,1 ≤ n ≤ N, and M×N is the size of the
given image.

(4) can be written as
Ra = −r, (5)

where R is a (p1 p2 + p1 + p2)× (p1 p2 + p1 + p2) matrix
and a and r are both (p1 p2 + p1 + p2)×1 vectors.

These equations give good AR model coefficient
estimations when the SNR is high. However, the error
increases with σ 2

v .

4. YULE-WALKER SYSTEM OF EQUATIONS IN
THE THIRD-ORDER STATISTICAL DOMAIN

The equations that relate the AR model parameters to the
third-order moment samples are [8][9]:
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p1
∑

i=0

p2
∑
j=0

a[i, j]C3y([i− k, j− l], [i− k, j− l]) =

−C3y([−k,−l], [−k,−l]) (6)

for k = 0, · · · , p1, l = 0, · · · , p2 and [k, l] 6= [0,0], where

C3y([i1, j1], [i2, j2])= E{y[m,n]y[m+i1,n+ j1]y[m+i2,n+ j2]}.

These equations are insensitive to external Gaussian noise.
The equations can be written in matrix form as

Ca = −c, (7)

where C is a (p1 p2 + p1 + p2)× (p1 p2 + p1 + p2) matrix
and a and c are both (p1 p2 + p1 + p2)×1 vectors.

5. THE COMBINED METHOD

In [1], a method which combines the Yule-Walker system
of equations and the Yule-Walker system of equations in the
third-order statistical domain is used to estimate the 2-D AR
model coefficients. Mathematically, an extended system is
written as:

D

( R

C

)

a = −D

( r

c

)

(8)

where the matrix R and vector r are defined in (5),
the matrix C and vector c are defined in (7),
D is a diagonal weighting matrix, and
a is the vector of the unknown AR model
coefficients, [a[0,1], · · · ,a[0, p2], · · · ,a[p1, p2]]

T .

In [1], the diagonal weighting matrix, D, was taken
to be an identity matrix.

6. WEIGHTING MATRIX

In this section, a novel weighting matrix is introduced. The
matrix remains diagonal. However, the elements depend on
the variance of the external Gaussian noise in the system,
which is derived in Section 6.1. In Section 6.2, the determi-
nation of the weighting matrix is presented.

6.1 Yule-Walker System of Equations for Noisy Signals
Consider the system as shown in (2). The signal x[m,n] and
the noise v[m,n] are assumed to be statistically independent,
hence the cross correlation function samples between x[m,n]
and v[m,n] is zero, i.e., rxv[k, l] = 0. Consequently

ryy[k, l] = rxx[k, l]+ rvv[k, l]. (9)

The Yule-Walker system of equations has in that case the
following form [7]:

p1

∑
i=0

p2

∑
j=0

a[i, j]ryy[i− k, j− l] =







σ 2
w +σ 2

v [k, l] = [0,0]
σ 2

v ·a[k, l] [k, l] ∈ S′QP
0 elsewhere

(10)
where [i, j] 6= [0,0].

In the matrix-vector form the above becomes (11) on the

next page.

Note that σ 2
v









a0
a1
...

ap1









= σ 2
v I









a0
a1
...

ap1









=









σ 2
v I 0 · · · 0
0 σ 2

v I · · · 0
...

...
. . .

...
0 0 · · · σ 2

v I

















a0
a1
...

ap1









(12)

and the system (11) may be written as (13) on the next page,
where ai = [a[i,0],a[i,1], · · · ,a[i, p2]]

T is a vector of size
(p2 +1)×1,

h1 = [1,0, · · · ,0]T is a vector of size (p2 +1)×1,

0 = [0,0, · · · ,0]T is a vector of size (p2 +1)×1, and

Ryy[i] =









ryy[i,0] ryy[i,−1] · · · ryy[i,−p2]
ryy[i,1] ryy[i,0] · · · ryy[i,−(p2 −1)]

...
...

. . .
...

ryy[i, p2] ryy[i, p2 −1] · · · ryy[i,0]









is a matrix of size (p2 +1)× (p2 +1).

After expanding the equations (11), we can remove
the first row of the equations since the variance of the driving
noise w[m,n] is unknown. The coefficient a[0,0] is assumed
to be 1, so we can move the first column of the matrix on the
left-hand side to the right-hand side of the equation. After
the rearranging step, the equations can be written in matrix
form as

Ryya+ ryy = σ 2
v Ia (14)

where the AR model coefficients estimation a is obtained
from (7) using

a = −C−1c. (15)

Let r1 = Ryya + ryy, where a is obtained from (15). The
variance of the noise v[m,n] can be calculate using

σ 2
v = (aT a)−1aT r1 (16)

6.2 Determination of the Weighting Matrix
The weighting diagonal matrix, D, is determined as (17) on
the next page. where dxe denotes rounding toward infinity.

7. SIMULATION RESULTS

Synthetic images generated from the following 2× 2 stable
and separable AR model are used for simulation purposes.
The 2−D stable AR model coefficients are obtained from
a = aT

1 ×b1, where a1 and b1 are both stable 1−D AR model
coefficients.
x[m,n] =−0.16x[m−2,n−2]−0.2x[m−2,n−1]−0.4x[m−
2,n] − 0.2x[m − 1,n − 2] − 0.25x[m − 1,n − 1] − 0.5x[m −
1,n]−0.4x[m,n−2]−0.5x[m,n−1]+w[m,n]
The driving noise, w[m,n], is zero-mean exponentially-
distributed. Additional Gaussian noise, v[m,n], with zero-
mean and unity variance is added onto x[m,n] to yield

y[m,n] = x[m,n]+ v[m,n].
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







Ryy[0] Ryy[−1] · · · Ryy[−p1]
Ryy[1] Ryy[0] · · · Ryy[−(p1 −1)]

...
...

. . .
...

Ryy[p1] Ryy[p1 −1] · · · Ryy[0]

















a0
a1
...

ap1









= σ 2
w









h1
0
...
0









+σ 2
v









a0
a1
...

ap1









(11)











Ryy[0]−σ 2
v I Ryy[−1] · · · Ryy[−p1]

Ryy[1] Ryy[0]−σ 2
v I · · · Ryy[−(p1 −1)]

...
...

. . .
...

Ryy[p1] Ryy[p1 −1] · · · Ryy[0]−σ 2
v I



















a0
a1
...

ap1









= σ 2
w









h1
0
...
0









(13)

D[i, i] =







1 for 1 ≤ i ≤ (p1 +1)(p2 +1)−1

d50σ 2
v e for (p1 +1)(p2 +1) ≤ i ≤ 2(p1 +1)(p2 +1)−2

(17)

Parameter Real Mean Estimated Variance
Value Value (SNR= 5 dB) (10−4)

a[0,1] 0.5 0.3481 0.2371
a[0,2] 0.4 0.2632 0.2396
a[1,0] 0.5 0.3478 0.1949
a[1,1] 0.25 0.1013 0.2787
a[1,2] 0.2 0.07000 0.2859
a[2,0] 0.4 0.2620 0.2499
a[2,1] 0.2 0.06993 0.2442
a[2,2] 0.16 0.04686 0.2966
Relative Error 0.4331

Table 1: The results of the combined method using an iden-
tity weighting matrix for a 2−D symmetrical AR model with
SNR equal to 5 dB.

Parameter Real Mean Estimated Variance
Value Value (SNR= 30 dB) (10−4)

a[0,1] 0.5 0.4992 0.2370
a[0,2] 0.4 0.3987 0.2753
a[1,0] 0.5 0.4987 0.2606
a[1,1] 0.25 0.2485 0.4745
a[1,2] 0.2 0.1986 0.4453
a[2,0] 0.4 0.3991 0.3323
a[2,1] 0.2 0.1991 0.4436
a[2,2] 0.16 0.1588 0.4987
Relative Error 0.01662

Table 2: The results of the combined method using an iden-
tity weighting matrix for a 2−D symmetrical AR model with
SNR equal to 30 dB.

Parameter Real Mean Estimated Variance
Value Value (SNR= 5 dB) (10−3)

a[0,1] 0.5 0.4922 0.1239
a[0,2] 0.4 0.3924 0.2682
a[1,0] 0.5 0.4902 0.1215
a[1,1] 0.25 0.2460 0.1854
a[1,2] 0.2 0.1952 0.4411
a[2,0] 0.4 0.3900 0.3247
a[2,1] 0.2 0.1958 0.4894
a[2,2] 0.16 0.1568 0.9877
Relative Error 0.05727

Table 3: The results of the combined method using the
new proposed weighting matrix for a 2−D symmetrical AR
model with SNR equal to 5 dB.

Parameter Real Mean Estimated Variance
Value Value (SNR= 5 dB) (10−3)

a[0,1] 0.5 0.4994 0.2417
a[0,2] 0.4 0.3990 0.2541
a[1,0] 0.5 0.4994 0.1833
a[1,1] 0.25 0.2487 0.3735
a[1,2] 0.2 0.1983 0.3938
a[2,0] 0.4 0.3993 0.3132
a[2,1] 0.2 0.1993 0.3896
a[2,2] 0.16 0.1588 0.4144
Relative Error 0.01578

Table 4: The results of the combined method using the
new proposed weighting matrix for a 2−D symmetrical AR
model with SNR equal to 30 dB.
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The variance of v[m,n] is adjusted so that SNR is equal to
5 dB for heavily noisy case and 30 dB for almost noise-free
case.

The results obtained from the conventional method can
be found in Table 1 and Table 2 for the SNR equal to 5 dB
and 30 dB respectively. The results arisen from the proposed
method may be found in Table 3 and 4 for SNR equal to 5
dB and 30 dB respectively. The average value of the lower
half of the diagonal matrix is 8 when the SNR is 5 dB and 1
for SNR equal to 30 dB.

8. SUMMARY AND CONCLUSION

In this paper, we reviewed two of the most widely used meth-
ods for two-dimensional autoregressive (AR) modelling: the
Yule-Walker system of equations and the Yule-Walker sys-
tem of equations in the third-order statistical domain, as well
as a method which uses the combination of the above sys-
tems. A new weighting scheme is purposed to control the
contribution of each system by calculating the external Gaus-
sian noise variance. The simulation results show that the new
weighting scheme enables the method to estimate AR model
coefficients in both low and high SNR systems.
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