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ABSTRACT

Source coding based on Gaussian Mixture Models (GMM) has been
recently proposed for LPC quantization. We address in this paper
the related problem of designing efficient codebooks for Gaussian
vector sources. A new technique of ellipsoidal lattice vector quanti-
zation (VQ) is described, based on 1) scalar companding optimized
for Gaussian random variables and 2) rectangular lattice codebooks
with fast trellis-based nearest neighbor search. The Barnes-Wall
lattice A\ in dimension 16 is applied to quantize the line spec-
trum frequencies (LSF) of wideband speech signals. The LSF are
computed in a manner similar to the AMR-WB speech coding algo-
rithm. The performance of memoryless and predictive LSF quanti-
zation for different GMM orders (4, 8 and 16) is evaluated at 36 and
46 bits per frame. The companded lattice VQ is shown to perform
better than its scalar counterpart, with similar complexity.

1. INTRODUCTION

A parametric approach based on Gaussian mixture models (GMM)
has been recently developed for the vector quantization (VQ) of
linear-predictive coding (LPC) parameters [1, 2]. Although the cod-
ing performance is limited a priori by the accuracy of the underly-
ing p.d.f. source model, this approach has some interesting features,
such as asymptotic bit-rate savings [1], bit-rate scalability and com-
plexity independent of bit rate [2].

In this paper, we address a problem related to GMM-based VQ:
the design of efficient codebooks to represent GMM components,
i.e. encode Gaussian vector sources. The main contribution of the
paper is the development of a new technique of companded lattice
VQ to improve the performance of parametric LPC quantization.
We address the specific case of 16 order LSF quantization for a
16 KHz sampled signal. This choice has several motivations. First,
multistage LPC quantization, for example as in AMR-WB [3], may
receive different numbers of bits. In AMR-WB, 36 or 46 bits are al-
located to predictive two-stage LSF quantization depending on the
coder bit rate. Even if the first stage codebooks are shared, several
sets of tables have to be stored for the second stage and for different
bit rates. The bit-rate scalability of GMM-based VQ may be ex-
ploited to reduce storage requirements. Furthermore, most results
on parametric LPC quantization [1, 2] deal with narrowband speech
coding. Yet, the performance/complexity advantage of GMM-based
VQ over split/multistage VQ should be more apparent in the wide-
band case, where high LPC orders and bit allocations are used.

This paper is organized as follows. The LPC coding method
of [2] is reviewed in Section 2. A new technique of companded
lattice VQ is presented in Section 3 for mean-removed KLT cod-
ing of Gaussian components. A specific greedy bit allocation al-
gorithm is also described in this section. In Section 4, the perfor-
mance/complexity of memoryless and predictive LSF quantization
at 36 and 46 bits per frame is evaluated for different GMM orders
(4, 8 and 16). The potential advantage of GMM-based LPC quan-
tization is also discussed over other quantizer structures. The con-
clusions are drawn in Section 5.

This work was supported by the NSERC and VoiceAge Corporation.
Stéphane Ragot was with Univ. Sherbrooke when this work was done.

2. REVIEW: GMM-BASED LSF QUANTIZATION

The line spectrum frequencies (LSF) provide an efficient LPC rep-
resentation for quantization purposes [4]. The p.d.f. of LSF vectors
x in dimension 7 can be modeled [2] by a Gaussian mixture model
of order M given by

M
/(x|@) = Z a; fi(x[6),

i=
where
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with the following constraints: o; > 0 and zf‘i 10 = 1. The di-
mension 7 is usually set to 10 for narrowband speech co, 16 in the
wideband case. The set of GMM parameters is given by

0= {ala“' 7aM7I~113'“ ’“M7213.“ 7ZM}7
where a;, U; and Z; are respectively the weight (a priori probabil-
ity), the mean vector and the covariance matrix of the i-th GMM

component. For a given source database, © is usually estimated
using the E-M algorithm [5].

2.1 GMM-based VQ by mean-removed KLT coding

The memoryless GMM-based VQ of [2] is illustrated in Figure 1.
For an input LSF vector x, the quantized LSF vector X is selected
among M candidates %0 withi=1,--- M, by minimizing a dis-
tortion criterion:

% = %) where j=arg minMd(x,i(i)),
=1

2y

The candidate %) is the representative of x in the i-th GMM com-
ponent (or class). With this point of view, the computation of X can
be interpreted as closed-loop classified VQ. The selection criterion
d is the log-spectral distortion (LSD) in [2] — a simple weighted Eu-
clidean distance may also be used [6]. The candidates %) are com-
puted in [2] by mean-removed Karhunen-Loeve transform (KLT)
coding, which is known to be optimal for the quantization of corre-
lated Gaussian sources [7]. This encoding procedure can be easily
extended to the case of predictive LSF quantization [2].
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Figure 1: Mean-removed KLT coding of the i-th GMM component.
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Figure 2: Coding of uncorrelated Gaussian components by companded VQ.

Based on the parameters L; and Z; of the i-th GMM component,
the candidate X is given by [2]

R0 = 1710y (Tix — ) +

where T; is the KLT matrix which decorrelates the i-th GMM com-
ponent and Q;(.) is a quantization method optimized for the uncor-
related i-th GMM component. The computation of 7; and the opti-
mization of Q;(.) require to compute the eigenvalue decomposition
of the covariance matrix 2; as

3 = Q diag(ay,---,0;) Of

where Gl% > > Gl%, are the eigenvalues of Z; (they are assumed
ordered without loss of generality) and the matrix Q; comprises the
eigenvectors of %,.

The eigenvalues Ul% e ,Ol%l (i =1,..,M) and the mixture
weights ap, - - -, )y are used in [2] to distribute bits between classes.
For a bit budget R;,; per vector, the number of bits R; allocated to the
i-th GMM component is constrained so that 281 4. .. 4- 28w < 2R |
An analytical solution for R; can be derived assuming high bit rates
and good “separation” between classes [2]. An equal bit distribution
(Ry = --- = Ryy) may also be used [6].

2.2 Coding of uncorrelated Gaussian components by bit-rate-
scalable companded scalar quantization

With the method of [2], the design of GMM-based VQ is some-
how reduced to the problem of encoding zero-mean uncorrelated
Gaussian components. The non-uniform scalar quantization of [2]
is illustrated in Figure 2, in the case of a zero-mean Gaussian source
y = (1, ,vn) of covariance matrix diag(0?Z,---,02). This tech-
nique has two interesting features: bit rate scalability and a com-
plexity independent of bit rate.

In Figure 2, the elements y; are normalized by 0j, so as to obtain
an i.i.d. zero-mean unit-variance Gaussian source z = (z1,- -+ ,zy).
An “optimal” scalar compressor ¢(.) is then applied to z;. Under
the high-rate assumption the optimal compressor for a unit-variance
Gaussian random variable u is given by [8]

1
c(u) = 3 (1 +erf(u/V6)),
where erf is the error function

erf (u) = %T /0 " ar.

The inverse operation is given by [8]

c )y =V6 erf ' 2u—1).

The source z € [—o0, +00]" is thus mapped into a source d € [0, 1]”
with d = (c(z1), - ,c(zy)). Scalar quantization in [0,1]” is then
applied to d. If dj is quantized with L; > 1 scalar levels, the recon-
struction d, is given by [9]:

A 1

di = (didi~ 31+ 3)/1

where [.] denotes the rounding to the nearest integer.
The scalar quantization described above can be interpreted as
follows. We define a codebook €' (Z") as :

CZH=7"n%
where the region Z of R” is given by

RB=10,Ly—1]x[0,Ly —1].

Then, the reconstruction d = (a?l ,-++,dy) can be written as: d=
((Fr+5)/L1, - (Fa+ 1) /L) where # = (71, ,7,) is a codevec-
tor in ¢ (Z"). This interpretation opens the door to performance
improvements by using a “good” lattice instead of Z".

3. A TECHNIQUE OF COMPANDED LATTICE VQ

3.1 Preliminaries: binary lattices and error-correcting codes
A lattice N in R” (n > 1) is a set of discrete points defined by:

N= {i;ZtVi(Zl7”'7Zn) Ezn}y

where vy,---,v, are linear independent basis vectors. Two simple
examples of lattices, Z" and Dy, are illustrated for » = 2 in Figure

3, where v = (1,0), vy = (0,1) for Z2? and v| = (2,0), v, = (1,1)
for D;. The family of lattices D, is defined by:

Dy ={(uy, - ,up) € Z"lu; + -+ +uy, even}.

In this work we will restrict ourselves to binary lattices, which
are extensively studied in [10]. Binary lattices are connected to
block error-correcting codes. For instance, D, may also be defined
as:

D, = 27"+[nn—1,2]
= {2u+cluez’cenn-1,2]}.

where [n,n — 1,2] is the binary parity-check code of length n and

Hamming distance 2, having 2"~ codewords. In general, a binary
lattice A may be decomposed as:

N=pZ"+N={pu+clueZ’,cen}.
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Figure 3: Examples of 2-D lattices: Z* and D, — with basic par-
rallepiped I1.

where p = 2" (with m integer > 0) and I are respectively the peri-
odicity and basic parallepiped of A. This point of view is illustrated
in Figure 3 for Z2 and D,. It can be checked that p =1, 1= {(0,0)}
for Z? and p =2, M =[2,1,2] = {(0,0),(1,1)} for D,.

In practice, we will use here the so-called Barnes-Wall lattice
N1 in dimension 16 to encode wideband LSF vectors. This binary
lattice is defined as [10]:

Nig =470 +2[16,11,4] + 16,1, 16] (1)

where [16,11,4] is a 2nd-order Reed-Muller code and [16,1,16] is
the binary repetition code of length 16. From Eq. 1, we find that
N1 has a periodicity of 4 and a basic parralepiped [ =2[16,11,4] +
[16,1,16] comprising 2! ! = 4096 points.

3.2 Companded lattice VQ

We define here a fixed-rate codebook from a binary lattice A in R”
as:
C(N)=NNZ

where
Z=10,pmy—1]x---[0,pm, — 1], )

p 1is the periodicity of A and my is an integer > 1 (k= 1,---,n).
Since the region &% is chosen as a parallelipedic region of space, we
obtain a rectangular lattice codebook. The sides of # are restricted
to have a length multiple of the lattice periodicity p to simplify the
indexing and search algorithms in %’(A). Following [11], we will
refer to my, as a multiplicity factor. An example of codebook &' (A)
is illustrated in Figure 3 (b) for A = D,, m; = 3 and my = 2. In this
figure, the 12 codevectors in 6’ (D,) appear as e’ instead of "o’.
The companded scalar quantization method described in Sec-
tion 2.2 and Figure 2 can then be extended as follows. Rectangu-
lar lattice VQ is applied to the vector d instead of scalar quantiza-
tion. The number of quantization levels is given by L; = pmy for

k=1,---,n. The reconstruction cfk is then

L
di = (P +5)/ (pmy),

where # = (Fy,---,7y) is the nearest neighbor of r = (pdym; —
Lo pdamy — 1) in € (N).

3.3 Indexing %'(A\) and nearest-neighbor search in € (A\)

The problems of indexing %’ (A\) and finding the nearest neighbor
in € (N) are solved in [10], in the case my =1, k= 1,--- ,n. The
algorithms of [10] can be readily extended to the general case m;, >
1, k=1,---,n. The indexing of & € ¢ (A) can be split into the
computation of two sub-indices, as follows [11]:

e Findu=(uy, - ,uy) € Z" with 0 <wy <my (k=1,--- ,n) such

thatr € M+ pu.

o Compute the sub-index of u using [log, [}_, m| bits.

e Compute the sub-index of (f — pu) € IN using the error-
correcting codes defining IN. (In this work, we employ A = A¢.
The sub-index of T — p u is therefore represented with 12 bits.)

An optimal search procedure in €’ (A\) is described in [10] based
on a trellis description and coset code construction of the binary lat-
tice /A — it boils down to computing the branch metrics and parsing
the trellis of A with the Viterbi algorithm. The metrics are computed
here using the mean-square error criterion. An important property
of this search procedure is that the overload in ¢ (A) is implicit
when computing the metrics and parsing the trellis. Note that the
trellis of A has 4 sections and 16 states [12, p. 1769]. The trellis-
based search in %' (Aj¢) has a higher complexity than rounding in
7", yet the increase in complexity is very limited.

3.4 Optimization of the multiplicity factors

A modified version is provided here to allocate the multiplicity fac-

tors my, specifying the region % of Eq. 2 and to encode the source

y described in Section 2.2. Given a bit budget R and the covariance

matrix diag(o?,---,07) of y, the allocation procedure consists of

the following steps:

1. Reserve bits to index I : R’ := R — Rp (for instance, Ry = 0 for
7", n—1 for Dy, 12 for Ayg). Initialize: mpy=1,k=1,--- ,n.

2. While [7_ymp < 28, m; == m; + 1
argmaxk:lvu.,,,(ok/mk)2

3. While [7_; my < 2R, mj :=m;+ 1 where j tests all positions

where j =

from 1 to n sorted according to (0y /my)%, k=1,--- ,n.

Note that in this work this algorithm is also used to allocate the
number of quantization levels L; to companded scalar quantization
since my = Ly for N =7".

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1 Experimental setup

The database used for this work is the NTT-AT wideband speech
material (sampled at 16 kHz) which is multilingual, multi-speaker
and lasts 5 hours — this material is stored on four CDs. The down-
sampling to 12.8 kHz and linear-predictive analysis of AMR-WB
[3] is used to extract LSF vectors of dimension 16. Note that si-
lence frames are discarded. Three CDs are selected to build a train-
ing database comprising 607,386 LSF vectors, while the other CD
is used to generate a test database of 202,112 LSF vectors. The E-
M algorithm [5] is applied to the training database to estimate the
GMM parameters for an order M =4, 8 and 16 (with full covari-
ance matrices, and means initialized by the generalized Lloyd-Max
algorithm). The LSF vectors in the test database are quantized with
the GMM-based method of [2]. Memoryless and AR(1) predic-
tive GMM-based VQ are tested. In the AR(1) predictive case, the
GMM parameters are trained on the (open-loop) prediction residual.
The AR(1) prediction matrix, which is constrained to be diagonal,
is estimated in open-loop assuming a perfect reconstruction. The
GMM components are quantized by mean-removed KLT coding,
using € (Z'°) or € (As). The bit allocation to GMM components
(or classes) is done according to [2]. The number of quantization
levels L; and multiplicity factors my are optimized with the modi-
fied greedy algorithm described in this paper.

4.2 Spectral distortion statistics

The performance of LSF quantization is evaluated with the well-
known spectral distortion (SD) [4]. The SD statistics obtained for
memoryless and AR(1) predictive cases can be found in Tables 1
and 2, respectively. Two bit rates (R;,; =36 and 46 bits) and differ-
ent GMM orders (M =4, 8 and 16) are tested. The histograms of SD
are also provided in Figures 4 and 5 for R;,; =46 bits and M = 16
only.

The results show that the companded lattice VQ based on Aj¢
improves the performance compared to companded scalar quanti-
zation. The gain in average SD is small (around 0.05-0.08 dB) in
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all cases, and the amount of outliers is typically reduced by 30-50
%. The rectangular lattice VQ developed here provides no shaping
gain over scalar quantization, only a granular gain — the granular
gain of A4 over Z' is around 0.86 dB. This small granular gain in
the LSF domain has a limited impact in terms of SD. The bit alloca-
tion Ry, has no influence on the performance gap between A = Z14
and A\ — the average allocation to LSF is indeed 2.25 and 2.88 bits
per sample at 36 and 46 bits, respectively.

The performance improves with the GMM order M. The com-
plexity (computation load, storage) increases linearly with M. A
trade-off has to be found to be competitive with existing LPC quan-
tization techniques.

The histogram of SD in the memoryless case is bimodal. In fact,
the SD is different depending on which GMM component is quan-
tized: the i-th conditional histogram of SD computed with the input
LSF vectors coded in the i-th GMM component, i = 1,---, M has
specific mean and shape. The results imply that the bit allocation to
GMM components developed in [2] may be improved — the under-
lying assumptions (e.g. clear separation of GMM components) are
not always valid, at least in the memoryless case.

Table 1: Results for memoryless GMM-based LSF quantization.

(a) Results at R;,; = 36 bits per frame.

M | avg. SD(dB) | SD>2dB (%) | SD > 4 dB (%)
g 138 14.00 0.0262
Z'% [ 8 1.28 9.38 0.0067
16 1.23 6.72 0.0035
g 131 10.71 0.0341
A | 8 124 733 0.0044
16 .19 357 0.0045
(b) Results at R,y = 46 bits per frame.
N | M | avg. SD(dB) | SD>2dB (%) | SD > 4 dB (%)
g 0.93 0.95 0.0034
Z'% [ 8 0.86 0.53 0.0005
16 0.83 0.29 0.0005
g 0.85 0.54 0.0019
A |8 0.81 0.27 0.0005
16 0.77 0.13 0
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Figure 4: Histograms of SD (memoryless case, 46 bits).

5. CONCLUSIONS

We presented a new technique of companded lattice VQ which ex-
tends the scalar quantization of [2]. This generalization keeps the
advantages of bit rate scalability and complexity independent of bit
rate. The results show that the spectral distortion of GMM-based
VQ can be reduced by using rectangular lattice codebooks instead
of scalar codebooks. The performance gain is however small since
we exploited only the granular gain of A4 over Z!°. Current devel-
opments focus on designing MA(1) prediction for the GMM-based
LSF quantization presented in this paper, in order to compare the
LPC quantization of AMR-WB and GMM-based LSF quantization.

Table 2: Results for AR(1) predictive LSF quantization.

(a) Results at R;,; = 36 bits per frame.

N | M [ avg. SD(dB) | SD>2dB (%) | SD > 4 dB (%)
q 112 512 0.0282
Z'% [ 8 1.08 3.91 0.0074
16 1.04 2.89 0.0029
1 1.06 353 0.0113
A | 8 1.03 2.97 0.0064
16 1.00 230 0.0009
(b) Results at R;,; = 46 bits per frame.
N | M [ avg. SD(dB) | SD>2dB (%) | SD > 4 dB (%)
4 0.74 051 0.0035
Z'% |8 0.72 0.30 0.0005
16 0.69 0.17 0
q 0.69 0.06 0.0020
A [ 8 0.67 0.17 0.0005
16 0.64 0.09 0

12000

— GMM-T6,A, 46 bits
i GMM-16,2"° 46 bits

10000

«
3
]
s

Number of LSF vectors
IS 2
& g
5] 5]
S S

2000

0 05 1 15 2
Spectral distortion

Figure 5: Histograms of SD (AR(1) predictive case, 46 bits).
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