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ABSTRACT

Recently, a sequence equalizer, the 1-D CBSE equalizer, which
belongs to the family of Cluster-Based Sequence Equalizers and
achieves the Maximum Likelihood solution to the equalization
problem, was reported. The 1-D CBSE does not require the explicit
estimation of the channel impulse response. Instead, it utilizes the
estimates of the cluster centers formed by the received observations.
In this paper, a novel cluster tracking scheme is presented which
allows the application of the 1-D CBSE in time-varying transmis-
sion environments. Although the proposed equalizer exhibits simi-
lar performance with that of the classic MLSE-LMS equalizer, the
overall required computational load is dramatically reduced. This
is achieved because the new method provides the means for an
efficient exploitation of the symmetries underlying the signaling
scheme.

1. INTRODUCTION

Two of the major problems encountered in many contemporary mo-
bile communication systems are those of InterSymbol Interference
(ISI) and channel time variation. ISI, which is due to multipath, can
be mitigated by the optimum sequence equalizer, known as max-
imum likelihood sequence equalizer (MLSE), which is effectively
implemented via the Viterbi algorithm (VA) [1]. The MLSE equal-
izer utilizes the channel impulse response (CIR), which is estimated
during the start up period, prior to the processing of each data block,
based on an a priori known training sequence. However, under time
varying conditions it is possible for the CIR to change significantly
during the transmission of a data block, leading to serious perfor-
mance degradation. For this reason, the CIR has to be continuously
re-estimated utilizing the decisions obtained by the VA in order to
track the channel variations.

Unfortunately, the VA provides reliable decisions after the re-
ception of, approximately, D� 5L data symbols, where L is the CIR
length [1]. This decision delay is inherent in the VA and leads to
poor performance since the channel taps used in the VA at the most
recent time, k, are estimated D time instances earlier, i.e., k�D,
and in the mean time the channel has changed. Many methods have
been proposed in order to address this problem associated with the
decision delay. These techniques have been evolved around the fol-
lowing main directions:

A) The channel tracking is achieved by utilizing tentative de-
cisions obtained with a small fixed delay, d, usually as long as L.
The length of this fixed delay, d, has to be selected carefully, since
the adoption of a very small fixed delay, which leads to desirable
short delayed channel estimates, implies erroneous tentative deci-
sions [2]. B) The fixed delay, d, is chosen long enough, so as
to avoid a large number of erroneous tentative decisions and the
VA, at time k, is supplied with channel taps which are the result
of an appropriately defined channel predictor [3]. C) A Per Sur-
vivor Processing (PSP) philosophy is adopted which results in no
delayed channel estimates by using 4L�1 different channel estima-
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tors1, where each one of them is associated with a specific state of
the VA. [4].

The main drawback of all of the above MLSE equalizers is their
high computational requirements, which may limit their practical
use. In the current paper, a novel MLSE equalizer is presented that
circumvents the problem of explicit CIR parametric modeling, lead-
ing to substantial computational savings in all the processing stages
of the VA, including the start up and tracking phases. The proposed
equalizer belongs to the family of Cluster-Based Sequence Equal-
izers (CBSE) [5], [6],[7],[8], and utilizes the clusters formed by
the received observations. Initialization is achieved via an effective
cluster center estimation technique [7], that exploits the structural
symmetries underlying the generation mechanism of the clusters of
the received samples. Furthermore, a novel cluster tracking scheme
equivalent, but less complex, to the LMS algorithm is introduced.

2. DESCRIPTION OF THE COMMUNICATION SYSTEM

The equivalent baseband communication system model is illus-
trated in Fig. 1. xk is the kth transmitted symbol, which takes values
from the dataset S � �1� j�1� j��1� j��1� j�, nk is the white
complex-valued additive noise and yk denotes the kth received ob-
servation. The transmitted symbols have been assumed to be inde-

Figure 1: Communication system model.

pendent and identically distributed (i.i.d.). The received signal sam-
pled at t � kT , with T being the transmission period of the symbols,
is given by

yk �
L�1

∑
i�0

xk�ih
�
k�i �nk � �

H
k �k �nk � ȳk �nk (1)

where h�k�i are the complex - conjugated channel taps at time in-
stance kT and ȳk indicates the noiseless observation associated with
the transmitted sequence of symbols xk�xk�1� � � � �xk�L�1. Thus,
�k � �hk�0� hk�1� � � � �hk�L�1�

T is the vector of the L complex taps of
the CIR at time instance k and �k � �xk� xk�1� � � � �xk�L�1�

T is the
vector of L successively transmitted symbols. The superscripts T ,
H, denote transposition and Hermitian transposition, respectively
and the variance of the noise is σ2 and the SNR is determined by
SNR �

�
limN�∞

1
N ∑N

i�1 E��ȳi�2�
�
�σ2

3. THE ONE-DIMENSIONAL CBSE

The MLSE equalizer is efficiently implemented via the Viterbi al-
gorithm, which estimates the transmitted symbol sequence based on

1The number 4 accounts for the four different symbols of the QPSK
signaling scheme.
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metric computations of the form Dk��
� �yk ��

H
k ��

2, with � rang-
ing over the set of the 4L possible L-tuples of input symbols. In
fact, the CIR estimate is needed only for the computation of the 4L

convolutions, �H
k �. However, eq. (1) suggests that what one really

needs, instead, are the noiseless observations ȳk��
� �

H
k � and the

computation of distance metrics of the simplified form

Dk��
� �yk � ȳk��

�2 (2)

The possible values that ȳk��
can take are simply the points (cen-

ters), in the complex plane, around which the received samples yk
are clustered, due to the noise.

Equalizers that belong to the novel family of Clustering-Based
Sequence Equalizers (CBSE), avoid the explicit estimation of the
CIR, as an intermediate stage for the �H

k � computation for all pos-
sible L-tuples �, by estimating ȳk��

� �
H
k � directly using any su-

pervised clustering technique [9], e.g., a simple averaging.
Fig. 2 shows the received observations for a 2-tap channel in the

presence of white Gaussian noise, with SNR=30 dB. The notation
ȳi
�xL�1� xL�2����� x0�

denotes the ith cluster center, which is associated

with a specific transmitted L-tuple � � �xL�1� xL�2� � � � � x0�. The
sequence equalizer which utilizes the distance metric (2) will be
referred to as the One-Dimensional CBSE (1-D CBSE). The 1-D
CBSE is equivalent to the MLSE with respect to performance but it
is less complex computationally, due to the fact that the computation
of the convolutions is not required. The 1-D CBSE is a reduced

Figure 2: Plot in the complex plane of the clusters formed by the ob-
servations at the output of the two-tap channel H�z� � �0�5� j�� ��0�6�
0�1 j�z�1. Crosses denote cluster centers.

complexity extension of the previously proposed CBSE equalizers
[5], [6].

When the channel varies with time, a center tracking scheme
has to be included in order to allow the tracking of the cluster cen-
ters while they move away from their initial positions.

4. CLUSTER CENTER TRACKING TECHNIQUE

The major drawback of the CBSE equalizers, as well as of the sym-
bol by symbol equalizers which also require cluster center estima-
tion, e.g., [10], [11], is the need for a relatively long training se-
quence, so that all the clusters can be represented with sufficient
observations in order to be able to estimate their centers accurately.
Recently, a new method for the cluster center estimation has been
presented [7], which does not require the direct information from all
the clusters. In contrast, the new center estimation method exploit-
ing the symmetries underlying the structure of the cluster centers
in the complex plane, succeeds in estimating all the cluster cen-
ters, based on the direct estimates of only L properly selected cen-
ters, speeding up the training period dramatically. In the sequel, we

briefly present the specific structure which is formed by the cluster
centers. An extensive discussion of the center estimation method
can be found in [7].

Let us assume a general L-taps channel with impulse response
vector �� �h0�h1� � � � �hm� � � � �hL�1�

T . The channel is considered to
be approximately constant during the transmission of a short train-
ing sequence. We define as the contribution, cm

x , of the mth tap, hm,
to the generation of the cluster centers the quantity cm

x � xh�m, which
takes 4 different values depending on x � �1� j� 1� j� �1� j� �
1� j�. In other words, this is the contribution of the hm tap to the
convolution sum in (1).

The 4L � 16 centers which correspond to the 2-taps example of
Fig. 3, are denoted by (�). We can observe that the centers are posi-
tioned in the complex plane in a specific way. All the centers form
4 similar squares whose size and angle of rotation are determined
by the contribution c1

x of the second tap. These squares are centered
on the corners of a fifth central square, drawn in dashed line, which
is associated with the contribution c0

x of the first tap.
Eq. (1) can be rewritten as ȳ�xk�xk�1�����xk�L�1� �∑L�1

m�0 cm
xk�m

where
ȳ�xk �xk�1�����xk�L�1� is the cluster center associated with the transmit-
ted L�tuple �xk�xk�1� � � � �xk�L�1�. We observe that the estimates
of the L tap contributions cm

x , m � 0� � � � �L� 1, is what one needs
in order to compute the 4L cluster centers2. In the tracking mode,

Figure 3: Cluster center constellation of the 2-taps channel H�z� � �0�5�
j����0�6�0�1 j�z�1.

the MLSE equalizers exploit the delayed decisions, provided by the
VA, �̂k�d � �x̂k�d � x̂k�d�1� � � � � x̂k�d�L�1�

T , to adapt the channel es-
timates. Similarly, the novel tracking scheme utilizes the same deci-
sions so as to update the center estimates in the complex plane. Pre-
viously proposed center tracking methods, e.g., [10], update only
one center per received sample. This results in very poor perfor-
mance, because many centers remain constant for a long period of
time even if, in the meantime, the transmission environment has sig-
nificantly changed. In contrast to these methods, the new technique
succeeds in adapting all the centers simultaneously, each time a re-
ceived symbol is detected.

Even though the cluster centers are moving in the complex
plane, their general structure of the squares is maintained. In order
to track all the cluster centers, what is needed is to rotate and expand
the associated squares toward the direction which is determined by

2It is easy to realize that only one value of a specific tap contribution,
say cm

1� j , need to be computed, and the rest can be obtained by simple π
2

rotations in the complex plane [7], e.g., cm
1� j � � jcm

1� j , cm
�1� j � �cm

1� j ,
e.t.c.
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each detected symbol. Let us take a two taps example under noise-
less transmission, for illustration purposes. Fig. 4 shows the center
structure as it has been formed at time instance k. If the received
sample yk�d�1, which is denoted by (�), has been detected by the
Viterbi algorithm as, e.g., �� �1� j� �1� j�, then, after the adap-
tation, due to the absence of noise, the center ȳ�1� j� �1� j� should be
moved to coincide with the point (�). In order to succeed in this,
we can adopt a two-step procedure.

Figure 4: Adaptation procedure.

Firstly, the central square is expanded in the direction of the
four small dotted arrows as it is shown in Fig. 4. In the sequel, the
four external squares are “re-centered” on the corners of the adapted
central square. According to this strategy, the center ȳ�1� j� �1� j� is

moved towards point (�), covering half the distance3 and the spe-
cific structure of the squares is also preserved. The result is shown
in Fig. 5. Secondly, in a similar way, the four external squares are
expanded, as it is shown by the dotted arrows in Fig. 5. The possi-
tions of the centers after the adaptation procedure are shown in Fig.
5 by triangles (	).

Taking into account that both, the size and the angle of rotation
of the squares, are determined by the corresponding tap contribu-
tions, the above procedure is efficiently realized as follows:

1. Compute the center ŷ� based on the estimates ĉi
k�d , 0 
 i 


L� 1, of the tap contributions at time instance k � d, where
� � �x0� � � � �xi� � � � �xL�1� is provided by the tentative decisions
of the Viterbi algorithm and corresponds to the received symbol
yk�d�1

ŷ� �
L�1

∑
i�0

ĉi
k�d�xi

�

2. Compute the error between the received sample yk�d�1 and the
corresponding center estimate

a � yk�d�1 � ŷk�d��
�

3. Adapt the tap contribution estimates

ĉi
k�d�1�xi

� ĉi
k�d�xi

�λ a� i � 1� 2� � � � � L�1�

3Basically, this assumes that the corresponding channel variation affects
equally all the tap contributions.

Figure 5: Adaptation procedure.

4. Compute the other values of the tap-contributions by π
2 rota-

tions.

Actually, the proposed cluster tracking technique is equivalent
to the LMS algorithm. Indeed, the last equation can be rewritten as
h�k�d�1�ixi � h�k�d�ixi�λ a or equivalently hk�d�1�i � hk�d�i�

λ
x�i

a�.

Taking into account that 1
x�i
� 1

�xi�2 xi and that �xi�
2 � 2 for all the

QPSK symbols, it turns out that hk�d�1�i � hk�d�i �
λ
2 xia�, which

defines the adaptation of the ith tap of the channel impulse response
using the LMS algorithm with step parameter µ equal to µ � λ �2.

5. PERFORMANCE EVALUATION

In the performance examples that follow, the time varying channel
has been simulated based on the Smith’s Rayleigh fading channel
technique [12].

Figure 6: Tracking performance.

Fig. 6 shows the tracking performance of the new cluster track-
ing scheme together with that of the LMS algorithm. The curves
are the result of the ensemble averaging of 1500 independent runs,
where the adopted 3-taps fading channel corresponds to vehicle
speed equal to 120 km/h. The symbol rate and carrier frequency
is 200 Kbauds and 900 MHz, respectively and the RMS of the real
and imaginary component of each path was set equal to 1. Both al-
gorithms have been initialized utilizing 15 training symbols and the
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Table 1: The computational complexities in terms of real operations for a data block consisted of Ntr training symbols and N data symbols.

adaptation procedure has been realized using the correct informa-
tion symbols. The step parameters λ and µ were set equal to 0.08
and 0.04, respectively. The steady state performance of both algo-
rithms, as it was expected (see Section 4), is the same. However,
the cluster tracking technique exhibits better initialization behavior
due to the enhanced convergence performance of the CE scheme
[7]. Fig. 7 shows the performance curves of the 1-D CBSE equal-

Figure 7: SER performance.

izer, when tracking is performed using 5 symbol delayed tentative
decisions without predictor4 (Æ), with predictor(�) or via the PSP
method (�). Moreover, the performance curve of the finite memory
decision feedback Bayesian equalizer (�) [11] is also shown for the
purposes of the comparison. The performance of the MLSE equal-
izer is not shown, since it exhibits slightly worse performance than
the 1-D CBSE due to the better start up provided by the latter al-
gorithm. The fading channel parameters are the same with those
mentioned in the tracking example of Fig. 6. Moreover, the trans-
mission is realized in data blocks comprising 200 information and
15 training symbols which have been positioned in the beginning of
each data block. Finally, the fading channel was left to evolve for
215 sec or equivalently for a time period of 43 million transmitted
symbols.

With respect to complexity, as it is shown in table 1, the 1-D
CBSE is dramatically less complex than the MLSE-LMS since it
does not compute any convolutions in any one of the processing
stages, included that of tracking and distance metric computation.
For example, in the case of a 5-taps channel, N � 200 and Ntr � 30
symbols and channel tracking using tentative decisions, the MLSE-
LMS algorithm needs more than 4.000.000 multiplications for the
processing of a data block, in contrast to the CBSE which needs

4see Section 1

less than 500. The complexity of the finite memory Bayesian equal-
izer is not indicated since, taking into account the 4L exponentials,
which have to be computed per received sample, is much more com-
plex than the 1-D CBSE [13].

6. CONCLUSION

In this paper a novel technique for the design of MLSE equaliz-
ers for time-varying transmission environments was proposed. A
novel cluster tracking scheme, which is equivalent to but less com-
plex than the LMS tracking algorithm, has been incorporated in the
structure of the 1-D CBSE equalizer. The simulation results show
an enhanced performance of the new method compared to both the
MLSE-LMS algorithm and the finite memory Bayesian-DFE equal-
izer. More importantly, this enhanced performance is achieved at a
fraction of computational complexity.
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