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ABSTRACT

A comparative study of the multichannel Affine Projection
(AP), the Fast Transversal Filter (FTF), the filtered-X LMS
(FXLMS) and the Recursive Least Squares (RLS) algorithms
is presented for active noise control (ANC) systems. This
study is based on simulations using real data and laboratory
experiments, and is focused on: their computational cost,
their convergence properties, their stability and their ability
to create quiet zones around listener ears. The performance
of the AP algorithm in the real system suggests its use in
ANC systems as an alternative to the classical multichan-
nel FXLMS since it provides meaningful attenuation levels,
lower convergence time and similar computational cost.

1. INTRODUCTION

The classical filtered-X LMS (FXLMS) [1] algorithm is the
most widely used adaptive filtering strategy applied to ANC
systems. However, it is well known that recursive least
squares (RLS) algorithms [2] produce a faster convergence
speed than stochastic gradient descent techniques, such as the
FXLMS algorithm, but requires a higher computational cost,
minimizing a weighted sum of the past squared error signals.
A previous work proposed a multichannel RLS algorithm for
ANC and evaluated its performance by means of simulations
for a random noise source, [3]. To overcome the compu-
tational complexity of the RLS algorithm various schemes
have been developed like the fast RLS algorithm and the fast
transversal filter (FTF) algorithm [4]. A multichannel FTF
algorithm was proposed in [3]. On the other hand, the Affine
Projection (AP) algorithm [5] can improve the convergence
speed of FXLMS algorithm avoiding the high computational
complexity and the instabilities of the RLS algorithms. A
multichannel AP algorithm was proposed in [6].

In this work, the multichannel FXLMS, RLS, FTF and
AP algorithms have been implemented in an ANC system.
Since multichannel ANC systems for local control intend to
create a quiet zone around a listener head, as first approach
it would be meaningful to know the sound levels around the
listener head, in addition to the traditional convergence and
computational cost studies. Therefore, as a previous step to
the practical implementation of a real multichannel ANC sys-
tem on a DSP card, the attenuation levels at the listener ears
within an actively controlled area have been simulated in the
present work using real data from a 1:2:2 ANC system, see
Figure 1. Furthermore, the multichannel algorithms which
exhibited better performance have been evaluated in a real-
time system. Those algorithms were the multichannel AP
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Figure 1: Scheme of the 1:2:2 ANC system

algorithm and the classical multichannel FXLMS. A Bruel
& Kjaer mannequin head and torso, illustrated in Figure 2,
and a moving platform have provided the measurement of
the quiet zones.

2. MULTICHANNEL ANC ALGORITHMS

A general feedforward multichannel ANC system consisting
of J secondary sources, K error sensors and I primary sig-
nals [7] will be considered.

The multichannel algorithms evaluated in this work pro-
cess as inputs the error signals, ek(n), and a version of the
reference signal xi(n) filtered through an estimation of the
secondary paths h j,k, vi, j,k(n), to update the adaptive filters
coefficients within each new sampling period. A complete
description of the different multichannel algorithms can be
found in [3, 6, 7]. However, a new approach have been given
in the algorithms implementation with regard to the temporal
index of the reference signal and its filtered version. First of
all, the filtered reference signal vi, j,k(n) is defined as:

vi, j,k(n) = hT
j,kx

′
i(n−1) (1)

being h j,k = [h j,k,1,h j,k,2, ...,h j,k,M]T and h j,k,m is the value
of the mth coefficient of the FIR filter that models the plant
between y j(n) and the kth error sensor, being M the filter
length. x′i(n) = [xi(n),xi(n−1), ...,xi(n−M +1)]T .
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Figure 2: Photograph of the mannequin and platform used in
the measurement process.

Equation (1) contrasts with similar descriptions of mul-
tichannel algorithms, for instance the FXLMS algorithm de-
scribed in [7], and it can be easily seen that the filtered ref-
erence signals, vi, j,k(n), have been delayed by one sample in
order to derive them from the same iteration that the refer-
ence signal implicitly presented at the kth error signal,

ek(n) = dk(n−1)+
J

∑
j=1

hT
j,ky j(n−1), (2)

where dk(n) and y j(n) are the primary sound field at the kth
error sensor and the jth secondary signal, respectively, at
time n. y j(n) = [y j(n),y j(n− 1), ...,y j(n−M + 1)]T . Con-
sequently, there exists higher correlation between the error
signals and the filtered reference signals and the algorithms
behaviour significantly improves in practice. This approach
has been applied to all the multichannel algorithms consid-
ered in this work.
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Figure 3: Convergence curves for random noise measured
at SE1. From top to bottom at the dashed line position:
FXLMS, AP2, FTF, AP3, AP5, RLS.

3. ANC SYSTEM DESCRIPTION

A practical ANC system with two secondary sources (SS1
and SS2), two error sensors (SE1 and SE2) and one pri-
mary source, has been implemented inside a wooden listen-
ing room, see Figure 1. Simulations have been performed us-
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Figure 4: Convergence curves for multitone noise measured
at SE2.

ing real acoustic channels measured using an in-house soft-
ware [8, 9]. A 4100 type Bruel & Kjaer acoustic mannequin
provided with two high precision microphones (SM1 and
SM2) was used to estimate the plants corresponding to the
measuring zone. The mannequin was moved by means of a
mobile platform inside of a square zone, see Figure 2.

4. SIMULATION RESULTS

FTF, RLS, FXLMS and AP algorithms have been simulated
using real data for a 1:2:2 and a 1:1:2 ANC systems in this
study. The mannequin has been virtually moved inside the
desired controlled zone (see Figure 2) in order to measure
the resulting acoustic field once the adaptive algorithm has
converged. Different primary noises have been used: a multi-
tone signal (10 harmonics of fundamental frequency 20 Hz),
random noise and a 80 Hz single tone. The initialization
variables of the different algorithms have been empirically
chosen by trial and error. Adaptive filters of 50 and 14 co-
efficients (for the single tone primary signal case) have been
used.

Figure 3 shows the performance of the different algo-
rithms for the first 15000 iterations with random noise as
reference signal measured at the first error sensor (corre-
sponding sampling ratio of 500 Hz) in the 1:2:2 ANC sys-
tem previously described. These curves, called convergence
curves [2], are obtained by plotting the instantaneous esti-
mated power at each error sensor divided by its initial value
in decibels. As can be seen from Figure 3, the RLS and FTF
algorithms exhibit slower convergence speed at the begin-
ning but finally achieve higher attenuation levels. However,
the convergence performance of the AP algorithms is good
from the first iterations achieving finally lower attenuation
levels. Figure 4 illustrates the convergence curves for the
multitone signal for the same 1:2:2 system. A poor perfor-
mance is shown for the FTF algorithm as it can be observed,
this is due to the use of a rescue variable that assures the algo-
rithm stability. On the whole, the FXLMS and AP algorithms
exhibit good stability in practice when the initialization vari-
ables have been conveniently chosen from the adaptation be-
ginning.

Table 1 shows the average attenuation levels at both error
sensors after algorithm convergence. The final attenuation
noise levels for random noise are very similar for all the al-
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Random noi. Multi. noi.
Algor. Flops/ite. Atten. Atten.

FXLMS 2887 16.24 36.66
RLS 215496 17.09
FTF 10975 16.29 22.31

AP(2) 10214 16.05 39.33
AP(3) 19265 15.50 52.55
AP(5) 48065 15.70 64.79

Table 1: Number of floating point operations per iteration
and average attenuation levels in dB at both error sensors for
the different algorithms and reference signals.

gorithms. However, different performances are shown for
the multitone signal. It must be noted that the RLS algorithm
became unstable when such a large number of iterations was
used and a reference signal different to random noise was ap-
plied. That is why the corresponding cell in table 1 is empty.
As it was aforementioned, the FTF algorithm is protected
with a rescue variable which causes poorer results in the mul-
titone signal compared with the other algorithms, but assures
algorithm stability. As it was expected, the RLS algorithm
is the most computationally demanding, but at the same time
the fastest one if stability is assured, see Figure 3.

Figure 5: Simulation of 1:2:2 ANC system. Attenuation
measured for random noise at SM1 using the FXLMS algo-
rithm.

We now investigate the ability of the considered multi-
channel algorithms to create quiet zones around the listener
ears noise levels at the mannequin microphones have been
measured. Figures 5 and 6 show the attenuation noise levels
at microphone SM1 in the controlled zone. The quieter area
is close to the error sensor 1. In terms of the final attenuation
levels, it is not observed meaningful differences between the
algorithms. Moreover the quiet zones shapes are very simi-
lar.

Finally, simulations with a 80 Hz single tone where then
performed in a 1:1:2 ANC system. This configuration was
chosen to compare the results with experimental ones. Fig-
ure 7 illustrates the attenuation levels achieved at microphone
SM1 using the AP algorithm with projection order N = 2 and
adaptive filters of 14 coefficients. The selected secondary
source was SS1, see Figure 1. The FXLMS and FTF algo-

(a)

(b)

Figure 6: Simulation of 1:2:2 ANC system. Attenuation
measured for random noise at SM1 using: (a) the FTF al-
gorithm and (b) the AP algorithm for the affine projection
order N=5.

rithms provided very similar quiet zones.

5. EXPERIMENTAL RESULTS

The best way to complete this study is to test the algorithms
behaviour in a real practical system. A 1:1:2 ANC system
and a 80 Hz single tone disturbance signal were chosen be-
cause of computational limitations of the processing facility.

Figure 8 shows attenuation noise levels recorded at SM1
mannequin microphone with the FXLMS and the AP (N=2)
algorithms. It can be easily observed that very similar quiet
zones were provided by both algorithms. An average atten-
uation noise level over 30 dB was achieved in the controlled
zone with both algorithms, slightly higher to the average at-
tenuation of 25 dB predicted by the simulations, see Figure 7.
It must be noted that the transducer positions for this exper-
iment were not exactly the same than those used in simula-
tions. The error microphones were placed closer to the mon-
itored area and the secondary source was moved slightly to-
wards its corresponding error sensor. This fact explains the
improvement of the final attenuation levels compared to the
simulations and also the changes observed in the shape of the
quiet zones.
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Figure 7: Simulation of 1:1:2 ANC system (SS1). Attenua-
tion measured for a single tone at the microphone SM1 using
the AP algorithm for N=2.

6. CONCLUSIONS

In this work, a performance comparison of different multi-
channel adaptive algorithms for noise control has been car-
ried out by means of simulations using real data and exper-
imental results. Meaningful attenuation levels at mannequin
microphones are obtained. Among the algorithms tested, the
AP algorithm has shown the best performance. It achieves
high attenuation levels, is robust in practical cases and ex-
hibits a meaningful versatility in terms of convergence speed
and computational cost. Furthermore, computationally effi-
cient versions of this algorithm can be developed for mul-
tichannel ANC applications. Real experiments validate this
statement.
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