AN ALGEBRAIC TECHNIQUE FOR THE BLIND SEPARATION OF DS-CDMA
SIGNALS

Joséphine Castaing and Lieven De Lathauwer

ETIS, UMR 8051 (CNRS, ENSEA, UCP)
6, avenue du Ponceau, BP 44, F 95014 Cergy-Pontoise Cedex, France
email: castaing@ensea.ft, delathau@ensea.fr

ABSTRACT

In this paper, we propose a new deterministic technique for the blind
separation of DS-CDMA signals received on an antenna array. We
start from the observation made by Sidiropoulos ef al. that the re-
ceived data exhibit the structure of a Canonical Decomposition in
multilinear algebra. We provide a new condition for the uniqueness
of this decomposition and we present a new algorithm in which the
solution is obtained by means of a simultaneous matrix diagonal-
ization. Next, we consider the special case in which the transmitted
signals have constant modulus. In the Analytical Constant Modulus
Algorithm by van der Veen and Paulraj the constant modulus con-
straint leads to an other simultaneous matrix diagonalization. The
CDMA structure constraint and the constant modulus constraint can
be combined. We derive an alternating least squares algorithm that
solves both sets of matrix equations simultaneously.

1. INTRODUCTION

Let us start by introducing a basic algebraic model for CDMA data
received by an antenna array. R users transmit information se-
quences of K symbols spread with a sequence of length J;. Trans-
mitted signals are received on a network of / antennas. In a first
time, we suppose that the channel is noiseless and memoryless.
The kth symbol of the rth information sequence is denoted s,., the
Jjth chip of the rth spreading sequence c;,- and the fading factor be-
tween user » and antenna i a;,. Defining ;. as the output of the ith
antenna for chip j and symbol k with i € Ny, j € Ny, and k € Ng
(N,, denotes the set of integers between 1 and r), we have:

R
Yijk = z Qir Cjr Skr-
r=1
This model stays legitimate in case of Inter-Chip Interference (ICI)
but no Inter-Symbol Interference (ISI) by adopting a discard prefix

or guard chips strategy [4]. One only needs to replace (er)jEN/
1

by (h,) jen,» Where A, is the convolution between the spreading

sequence associated to rth user and the impulse response of the cor-
responding channel:

R
Yijk =y @ir hjr Sgy-
r=1
This equation can be written in a tensor (multi-way array) format

as:
R

W = ZA,,oHroSF7 (1)

r=1
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in which € C»/*K 4, e C!,H, € C/ and S, € CK. Eq. (1) is a
decomposition of ¢ in third-order rank-1 terms. Such a decompo-
sition is called a Parallel Factors Model (PARAFAC) or a Canonical
Decomposition (CD) [1, 2, 4]. This multilinear point of view w.r.t.
CDMA data was adopted for the first time in [4].

Define A = [Al .. .AR], H= [Hl .. .HR], S= [Sl .. .SR], Eq. (1) has
a number of inherent indeterminacies. First, the order of the rank-1
terms is arbitrary. Secondly, 4,, H,, S, may be rescaled (» € Ny)
provided the scaling factors compensate each other.

In [3, 4] it was shown that the CD (1) is unique, apart from the trivial
indeterminacies mentioned in the previous paragraph, if

k(A) +k(H) +k(S) = 2(R+1). @)

In this expression, k(A) denotes the “Kruskal-rank” of matrix A
defined as the maximal number such that columns of any submatrix
built from k columns of A are linearly independent.

In Section 2 we will propose a weaker condition. Our proof is con-
structive. It allows to obtain the canonical components from a si-
multaneous diagonalization of a set of matrices. Section 3 shows
that in this framework it is easy to impose the Constant Modulus
(CM) property on the symbol estimates. Section 4 introduces a new
Alternating Least Squares (ALS) algorithm for the combined CD /
CM problem. Section 5 presents some simulations. Section 6 is the
conclusion.

2. CANONICAL DECOMPOSITION
We stack the elements of tensor ¢ in a IJ x K matrix Y:
Y =(AoH) S, 3)
in which © represents the Khatri-Rao or column-wise Kronecker

product.

Let a Singular Value Decomposition (SVD) of Y be given by:
Y =UDV*. 4)
From equations (3) and (4), we have:

AoH = UDF
§T  — FlyH (5)

where F' is an invertible R X R matrix.

If matrix F is known, matrices S, H, and A can easily be
calculated. Obviously, S = V*F~T.  Moreover, AOH =
[Ay @ Hy,4Ay @ Hy,...,AR ® Hg]. Let vec(X) denote a vector rep-
resentation of the M x N matrix X = [X, X5, Xy] such as vec(X) =
XTI xT,.xh]”
vec(.)

If we stack each column of A © H in a R x R matrix Nj, then

and unvec(.) denote the inverse operation of

N; = unvec (4; @ H;) = H;Al
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is theorically a rank-one matrix.

Apart from a scaling factor, H; is the left singular vector associated
with the highest singular value of IN; and 4; is the conjugate of the
right singular vector associated with the highest singular value of
N;, i € Np.

The problem is now finding a matrix F' that satisfies equation (5)
and evaluating under which conditions this matrix is unique.

Let E, be the matrix built by stacking the rth vector of matrix U =
UD in a/ x J matrix.

E, = unvec(U,)

unvec (((A ©OH) F71>r)
R
Z (HkAk) )kr~

In order to continue, we need the following theorem.

Theorem 1

Consider mapping ®: (X,Y) € C/ x C™ —— ®(X,Y) €
CIxIxIxJ deﬁned by:

(DX, Y)ijt = XijVii +YijXi — Xivkj — Yixej for all (i,j,k,1) €
N[XNJXN[XNJ.

Given X € C™, ®(X,X) = 0 if and only if the rank of X is at
most one.

Proof

The case where X = 0 is obvious.

Let X be a rank one matrix. There exist two vectors u and v such
that x;; = u;v;. Then (®xy);jrr = 2(w;vjugv —upvpugv;) = 0.

Now, let X be some matrix verifying ®(X,X) = 0. Let the SVD
of X be given by X = UXV#. Then we have:

*
XijXp = XiXkj =y OrOtirttis(VjrVis = VjsVir)

= ; Oy Osttirttes (VjrVis — VjsVir) "
r#s

The tensors with entries w;-u, (v vig — vjsvi)*, 7 # s are linearly
independent because matrices U and V are unitary. Consequently,
0,0, = 0 if r # 5 and therefore X and X are rank one.ll

We can construct a set of R? tensors ®, defined by

CD,,S = q)(Em Es)

R R
@ ( S Hpdy(F ), S HquT(Fl)qs> .
p=1 qg=1

Due to the bilinearity of ®, we have:
i 1
O= 3 (F)(F )qsqa(H,,A;, HquT). (6)
Pg=1
Let B be a R x R symmetric matrix verifying:
R

z q)rsBrs =0. (7)

rs=1

We can replace @, by expression (6) and we obtain:

R R
T S (F ) E )0 (HPA; HquT> B, — 0.
q=

In accordance with theorem 1, ® (H,Al, HyA})) = 0 for all p in
Ng, hence:

R
S () (F )y B (Hydl, Hydl) =o0.
1 pg=1
q

M=

7

Furthermore, due to the symmetry of ® and B:

R R
zl zl ) *l)qumm(HpAg,Hqu):o. )
rs= q:

<q

Let us suppose that the tensors (® (HPA;7 Hqu))qu are linearly
independent. Then equation (8) implies:

(Fil)pr(Fil)qurs = quapzp )
1

M=

7

in which & denotes the Kronecker symbol (8, =1 if p=¢, 8py =0

if p # q).
Equation (9) can be rewritten as:

B =FAF, (10)

in which A is a diagonal matrix whose diagonal elements are A,
p €Ng.

The reverse holds also true: any matrix B of the form (10) with A
an arbitrary diagonal matrix satisfies equation (7). Hence the kernel
of P = [vec(®y),vec(Py3),...,vec(Pgr)] yields R matrices.
Finally, the matrix F can be found from the following simultaneous
decomposition:

B: = FAFT
B, = FAFT

} , (11)
Br = FARFT

where Aq,Aa,...,AR are R diagonal matrices. Algorithms for the
computation of this simultaneous decomposition may be found in
[1, 4, 8] and the references therein. In the presence of noise, the
matrices B1,Ba,...,BR are found via the R right singular vectors
of P corresponding to the smallest singular values. These matrices
can be weighted in accordance with their expected accuracy (a more
accurate estimate corresponding to a smaller singular value).

The number of users R that can be processed in this way is bounded

by the condition that all tensors (& (H,A!, H,A] ))p<q are inde-

pendent (equation (9)). It can be shown that this condition is gener-
ically satisfied as long as R(R— 1) < (1> —1)(J*—J)/2 (proof
not included). This means that a number of users can be allowed
that depends on the product of / and J, and not on their sum, as
suggested by equation (2).

The algorithm can be summarized as follows:

e Stack % inalJ x K matrix Y.

e Compute the SVD of Y, call D the diagonal R X R matrix con-
taining the R highest singular values, U the matrix of associated
left singular vectors and V the matrix of associated right singu-
lar vectors.

e For all » € N, stack rth vector of UD in a / x J matrix E;..
e For all (r,s) € Ng2, r < s, construct the 7 x J x I X J tensor
®,s = P(Er,Eg) and stack it in a 2J? vector W,

378



e Construct the 72/ x R(R — 1)/2 matrix P =
[Wi2,W13,..., LP<R,1)R] and take its R right singular vec-
tors associated with the R lowest singular values.

e Stack each of these vectors in the upper right corner of a matrix
B, and construct the lower left corner by symmetry.

e Obtain the matrix F by means of a simultaneous diagonalization
of matrices By, » € Np.

e Estimate S as V*F 1

(e For all € N, stack the rth column of matrix UDF ina R X R
matrix Ny.

e Estimate H as the matrix which contains the left singular vec-
tors associated with the highest singular value of each matrix
Ny and A as the conjugate of the matrix which contains the
right singular vectors associated with the highest singular value
of each matrix Ny.)

3. CONSTANT MODULUS CONSTRAINT

If the transmitted information sequences are CM, then this con-
straint can easily be combined with equation (11).

According to equation (5), matrix V containing the right singular
vectors of Y satisfies:

v = FsT. (12)
This is the classical expression of an (R x R) instantaneous mixture

of CM source signals. In [8] it is shown that the demixing matrix
may be found from the simultaneous matrix decomposition

M; = FHF!
My, = FiHﬂzFil

. (13)
Mgr = FiHQRFfl

where matrices (£2;);cn, are diagonal and where (M );cn, are ob-
tained from V. For the computation of the matrices (IM;);en,, We
refer to [8]. Because this system is very similar to the system ob-
tained from the CDMA structure constraint (11), they can be solved
jointly.

4. AN ALTERNATING LEAST SQUARES ALGORITHM

In this section, we present a new ALS algorithm for the simulta-
neous diagonalization of systems (11) and (13). This algorithm is
a generalization of the algorithm proposed in [4]. An ALS algo-
rithm consists of an iteration over conditional least-squares updates
of unknown factors.

Writing F = FT, we have:

B; = FALF

B, = FAxF

Br = FARF

Ml — :E\—*QlFfl (14)
M, = Ff*Q2F71

MR = Fi*QRFfl

An iteration step consists of the subsequent minimization of the cost
function zf:l (”Bi — F/\iﬁ‘”2 + HM, — I F! ||2) with re-
spect to A\ and Q, then with respect to F, and finally with respect
to F. In order to initialize the algorithm, we can take F,;; equal
to the eigenmatrix of B1B2 ! and Fy,; equal to the transpose of
Finit-

An iteration step can be implemented as follows.

1. Updating the estimate of \; and Q4
We call diag(/N\;) the~vector that contains the diagonal values of /\;.
Equation B; = FA{F can be rewritten as:

vec(By) = (FTQF) diag(I;).

For all i € Ng, /\; follows from this linear set of equations.

Likewise, the equation Q; = F*M;F can be rewritten as:
diag(Q;) = (FT @f“*) vec(M;).
Q;, Vi € Ng, follows immediately.

2. Updating the estimate of F
Define 51 = [/\:[F,/\gF7 cee 7/\RF] and 62 = []31,]327 cee ,BR].
According to (14), & = F 9, = Ir Fdy, hence:

vec(&y) = (5{ ®IR)vec(F).

We also define y; = [(F*Mq)7, (F*M2)7,...,(F*Mg)”]" and
Vo = [Q{,Q%,...,Qﬁ],
According to (14), y» = B F = y1FIR, hence:

vec(yp) = (IR ®@ yi) vec(F).
‘We obtain:

ot e[ o

F follows from this overdetermined set of equations.

3. Updating the estimate of ¥

First, we define & = [(FA1)7,(FA2)7,...,(FAR)?]" and & =
[BI,BI,....BL].

According to (14), & = & F = B FIR, hence:

vec(dy) = (IR ®@ &) .vec(F).

We also define y5 = [M31F, M2F, ..., MRF]| and yy =
[Q1, Q2, ..., Qr]. N .
According to (14), yw* = Fy3* = IR Fy3*, and we get:

vec(y") = (yf{ ®IR) vec(F).

‘We obtain:

vec(ys")

[ 1R®a; }vec(ﬁ):{ vec(dy) } (16)

F follows from this overdetermined set of equations.

We decide that the algorithm has converged when the Frobenius
norm of the difference between the estimation at iteration & and the
the estimation at iteration £+ 1 is less than a certain tolerance €.

5. SIMULATION RESULTS

Figures 1 and 2 depict Symbol Error Rate (SER) versus Signal
Noise Ratio (SNR) for our ALS algorithm combining CD and CM
constraints.

Figure 1 corresponds to the case of R = 6 users, / = 4 antennas,
K =100 symbols and a spreading factor J = 5. Symbols are QPSK
modulated. Results have been averaged over 30 simulations.
Figure 2 corresponds to the case where 1=3, J=4, K=100 and R=6.
Note that the Kruskal-bound (2) (yielding a maximum of 5 users) is
surpassed; nevertheless our algorithm still works well.

379



10_ L L L L L
0 2 4 6 8 10 12
SNR
Figure 1: SER versus SNR for [=4, J=5, K=100, R=6
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Figure 2: SER versus SNR for [=3, J=4, K=100, R=6

6. CONCLUSION

In order to separate DS-CDMA signals impinging on an antenna
array, one can resort to a CD in multilinear algebra. In this paper
we showed that the Krustal-bound on the number of users can be
surpassed. We provided a new sufficient condition for the unique-
ness of the decomposition. We presented a new algorithm based
on a simultaneous matrix diagonalization. Furthermore, we showed
that CD and CM properties can be combined by deriving an ALS
algorithm. Principles exposed in this paper are also useful for
other telecommunication applications in which the CD plays a role
[S,6,7].
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