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ABSTRACT

We propose a multiple description image coder which uses a linear
transform to generate different correlated descriptions. This coding
technique is useful when transform coefficients have to be trans-
mitted over lossy channels, such as packet networks, since statis-
tical dependencies among descriptions help the receiver to better
estimate lost coefficients. The correlating transform is determined
from a gradient search and assumes knowledge of the channel loss
statistics as described in [1]. Simulation results show a qualitatively
and quantitatively considerable performance increase over a stan-
dard DCT based image encoder.

1. INTRODUCTION

Multiple Description Coding (MDC) is a technique to encode real-
time multimedia sources when transmitted over lossy channels such
as packet networks. An MDC source encoder provides different
representations of the source such that, when all descriptions are
available at the receiver, an high-quality reconstruction of the source
is possible, while if only a small number of descriptions is avail-
able, a reconstruction is still possible even though a lower quality
is obtained. MDC is suitable in all those situations in which small
transmission delays are important and long codes are not practical.
Furthermore having more descriptions makes sense when channels
are not reliable, such as best effort packet networks, and transmitted
source signals allow different quality of reconstruction (distortions),
as in the case of multimedia signals. It is the application to mul-
timedia real-time transmission over packet networks that recently
increased interest in MDC [1–6].

Transform coding may be used as a technique to generate dif-
ferent correlated descriptions. The statistical dependencies among
descriptions helps the receiver to better estimate lost descriptions.
This technique was first proposed by Wang et al. [4] and further
developed by Goyal and Kovačević [3].

In this article a new compression scheme for images is pro-
posed as a modification of widely adopted methods based on Dis-
crete Cosine Transform (DCT). A correlating transform is applied
to DCT coefficients in order to robustify transmission. The correlat-
ing transform used is determined with a numerical algorithm, [1,7],
that relies on a gradient search and allows to compute an optimal
transform applicable to any number of descriptions and any number
of coefficients. Finally results of qualitatively and quantitatively
improvements of reconstructed images over standard schemes are
shown.

2. TRANSFORM CODING WITH ERASURES

Let’s start considering the coding-decoding cascade model shown
in Figure 1. With respect to the traditional transform coding we
include an erasure mechanism that randomly cancels some of co-
efficients. The source is as an N-dimensional random vector y =
(y1,y2, . . . ,yN)T and the N ×N matrix T is the transform matrix.
The N transform coefficients z = (z1, . . . ,zN)T , where z = TTy,
are quantized, usually with N different scalar quantizers zq = Q(z),

and sent over the erasure channel. Say that Ne coefficient are lost
and therefore only N −Ne survivor coefficients are available. The
receiver, that knows which coefficients have been erased1, provides
a linear reconstruction of y through a Wiener filter

Cro(e) = E[zqez
T
qe]

−1E[zqey
T ]

which minimizes the mean square error
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Figure 1: Transform coding with erasures

At each channel use, the erasures can be described by a random
binary vector e = (e1,e2, ...,eM)T , with ei = 0, if the i-th compo-
nent is erased and ei = 1 otherwise. A compact description of the
erasure process can be done by defining the residual vector ze con-
taining the N −Ne survivor components kept in the same order and
by defining an (N −Ne)×N matrix P(e) such that

zqe = P(e)zq.

The structure of P(e) models the type of erasures that can hap-
pen on the channel: for example P(e) may have a block structure
to model packet-wise (group) losses.

The minimum error for each error configuration e is

�
o(e) =

1
N

tr{Ry −E[yzT
qe]E[zqez

T
qe]

−1E[zqey
T ]}.

Assuming that the receiver acts optimally on each “erased” vec-
tor, the total mean squared error averaged over all erasure events is

�
to =

1
N ∑

e

Pr{e}
�

o(e). (1)

1In a packet communication link the receiver knows which packet has
lost via a progressive number of the packets (such as in RTP).
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Figure 2: General scheme

In standard transform coding, KLT is known to be optimal in
terms of rate-distortion performance, but in the presence of the era-
sures optimality is lost and a better transform can be determined.
Our goal here is to search for a linear transform that minimizes
�

to assuming that channels statistics are known. In looking for the
best transform T, we refer to the model shown in Fig. 2. Under
fine quantization assumption, quantization is modeled as an addi-
tive noise η with zero mean and uncorrelated with the input signal
z [8] . The correlation matrix of the quantization noise η is

Rη = TRyT
T �B, (2)

where � is the Hadamard product (element-by-element matrix
product) and B = diag(β1, . . . ,βN) where βi has the form a2−bNbit

where Nbit is the number of bit allocated for the ith component and
a and b depend on the type of quantizer and on the distribution of
zi [9, tab 4.4].

When erasures are taken into account, the role of the transform
changes. KLT decorrelates input coefficients and its optimality re-
lies on this property, but here the goal is to produce correlated coeffi-
cient so that lost coefficients can be better estimated at the receiver.
Matrix T is therefore a correlating transform that has the role to
protect transform coefficients against losses, increases the number
of degrees of freedom in the coder design and could be considered
a sort of “pre-emphasis” filter bank.

The system performance, averaged over all possible erasure
events, becomes

�
to(e) =

1
N

tr(Ry)

−
1
N

Ee[tr(RyT
T PT (P(TRyT

T

+Rη )P)−1PTRy)].

The problem of non trivial optimal choice for T is






To = argmaxTφ(T)
φ(T) = Ee[tr(RyT

TPT (P(TRyT
T

+Rη )P)−1PTRy)]

where φ(T) is the optimization cost function (average distortion
over all possible loss configurations).

The search for the optimal matrix T is based on a gradient as-
cent algorithm which uses the recursion

T(n) = T(n−1)+ µ∇Tφ(T(n−1)), (3)

where ∇Tφ is the gradient matrix (gradient flow) of φ with respect
to T and µ is a scalar parameter. The gradient is computed by using
techniques from matrix differential calculus [10] and a brief outline
of derivation is reported in the appendix. It results to be

∇Tφ = 2Ee[WT Ry −WT WTRy − ((WT W)�B)TRy], (4)

where
W = RyT

TPT (P(TRyT
T +Rη )P)−1P.

Application of the gradient ascent algorithm requires also
knowledge of the correlation matrix of the input signal, Ry, and
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T

Figure 3: Forward Transform

the loss probability of the channel, P(e). At each iteration the gra-
dient ∇φ is evaluated, according to eq. (4), and a new matrix T
is evaluated from eq. (3) where µ is a scalar constant parameter.
Iterations stop when ‖∇φ‖2 < ε , with ε in the order of 10−3. Eval-
uation of the quantization noise correlation matrix Rη is required
at each iteration since Rη depends on matrix B which in turn de-
pends on the number of bit allocated to each coefficient. We main-
tain fixed the total number of bits to be allocated and therefore the
bit-rate at the output of the quantizers. With such a budget we use
a standard integer optimal bit allocation algorithm [9] to distribute
bits among coefficients which depends on variances of coefficients
after the correlating transform. Therefore allocation of bits has to
be repeated at each iteration to reflect the fact that those variances
change at each step. The search for the optimal matrix T requires a
double iteration, i.e. at each step in which a new T is computed, an
iteration to redistribute the total number of bits among coefficients
is required and a new Rη is evaluated. Again the search for the
optimal correlating transform is performed at constant bit-rate and
therefore side and central distortions change to provide an overall
better performance in the sense of the cost function (1).

The gradient expression requires evaluation of the average over
all the possible erasure events and needs to know, or estimate, the
probability of each one of them. This is exponentially complex if
the number of loss configurations is large. In our application it is
likely that the coefficient set zqe are divided into a small number of
subgroups (packets, in our experiments only three), that exhibit a
manageable number of loss configurations.

3. COMPRESSION SCHEME

Our image encoder is based on DCT transform which is widely
adopted transform in image compression such as JPEG [11]. The
forward transform scheme is shown is Fig 2. Each image is divided
in square blocks of dimension 8× 8 and all samples of the block
are dc-level shifted from unsigned integers with range [0,2p −1] to
signed integers with range [−2p−1

,2p−1−1] (p = 8). Each block is
then transform coded independently and DCT coefficients are rear-
ranged in a one-dimensional vector according a zig-zag pattern that
has the advantage of placing low frequency coefficients in first po-
sitions. Since DCT transform has the property to pack considerable
amount of image energy in the first coefficients, compression can
be achieved selecting a subset of first N transform coefficients. Our
choice of N is based on the resulting PSNR (peak signal-to-noise
ratio). We choose N = 30 because, with the quantization scheme
described in the following, a PSNR of about 30dB is obtained, a
threshold value for an image of visually acceptable quality.

A correlating transform T is then applied to the N survivor DCT
coefficients, i.e. to the vector y. With such a scheme, correlation
matrix is applied to N = 30 coefficients, rather than to 64 coefficient,
and therefore a matrix of size 30×30 instead of 64×64 has to be
found. Matrix T is determined by using a gradient ascent algorithm
described in the previous section. Note that gradient evaluation as-
sumes that autocorrelation matrix Ry and the number of descrip-
tions are known. The former is estimated from real data, i.e. from
DCT coefficients of test images, and the latter is chosen to be equal
to 3, a practical value that reduces the average over all the possible
erasure events to a manageable number of loss configurations.

Prior transmission, each coefficient is quantized with a differ-
ent uniform scalar quantizer which use optimal allocated number of
bits that results from evaluation of optimal T. Finally, quantized
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Original
no losses, no correlating transform, 

PSNR=29.78, 0.94 bit/pixel

Losses = 25%, no correlating transform, 
PSNR=18.31, 0.94 bit/pixel

Losses = 25%, correlating transform, 
PSNR=25.73, 0.94 bit/pixel

Figure 4: Lena

coefficients are partitioned into the chosen number of descriptions
to be transmitted independently over erasure channels.

Scalar uniform quantization is clearly a non optimum choice
here because of the presence of correlation among coefficients and
because in general the correlating transform might be non orthog-
onal. As already pointed out in [12] when a non orthogonal lin-
ear transform is used and scalar quantization of transform coeffi-
cients applied a larger mean-squared error is obtained for a given
rate because quantizer cells in signal space become non cubic. In
order to reduce the resulting MSE both Orchard et al. and Goyal
and Kovačević have chosen to quantize before the correlating trans-
form is applied. This has the advantage to maintain quantizer cells
cubic and eventually to apply quantization to uncorrelated coeffi-
cient. The correlating transform has to be an integer-to-integer (I2I)
transform and an error is introduced when approximating the I2I
transform with the linear continuous transform determined by the
analysis performed by Orchard and Goyal. An high rate analysis of
central distortion shows that an I2I transform does not change cen-
tral distortion which depends only on quantization (i.e. does not de-
pend on transform). Therefore one can maintain to a fixed relatively
small value the central distortion and try to minimize side distortion
searching for an optimal correlation transform with a constraint on
the rate.

Here we follow a different approach and maintain scalar quan-
tization after the correlating transform. This give us the possibility

to control through the correlating transform both central and side
distortions and obtain an optimal tradeoff given the channel model.
Therefore if we transmit over a very lossy channel, on which the
probability of getting all descriptions together is small, we prefer
to reduce central distortion and increase the side distortions main-
taining fixed the overall rate, trying to make a better use of the bits.
This is the meaning of the cost function (1). Therefore we consider
scalar quantization a suboptimal choice which maintains simplicity
because our algorithm optimize also respect to quantization noise
since variances change at each iteration. In order to get better results
one should use vector quantization, but the resulting coder would be
too complex.

At the receiver reverse operations are needed. A Wiener filter
provides the best MSE reconstruction of vector y, i.e. survivor DCT
coefficients after compression, and all reconstructed samples are dc
level shifted to unsigned integers. A reverse vectorization operation
provides reconstructed 8×8 image blocks.

Our encoder is still based on a linear transform that consists of
a cascade of DCT and the correlating transform T in the forward
path and a cascade of Wiener filter and inverse DCT in the reverse
path. At the receiver reconstruction filter has size N × (N −Ne) and
the resulting vector has size N = 30 which is then used to provide a
block of 8×8 to the inverse DCT.
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4. SIMULATIONS

We apply our MD encoder to a set of gray images and transmission
of different descriptions on an erasure channel is simulated. We
report also results of a comparison with a coding scheme without
correlating transform. Results of reconstructed image are shown in
Fig. 4 and show the visual improvement on reconstructed image that
corresponds to a significant increase in PSNR. More specifically, in
Fig. 4 the upper-left corner shows the original (not compressed)
image. On the right a DCT compressed version of the same image
is shown for comparison. This is compressed with a number of
DCT coefficients to be transmitted equal to 30. Each coefficient is
quantized by means of an uniform scalar quantizer and each one of
them uses an optimally allocated number of bits. We used an integer
bit allocation algorithm which provides the best distribution of bits
based on distribution of variances of each coefficient.

In the bottom row we show reconstructed images after transmis-
sion over an erasure channel. In lower left corner the reconstructed
image without use of correlating transform shows the disruptive ef-
fect of cancellations that causes a decrease of more 10dB in PSNR.
On lower right corner the reconstructed image with application of
the correlating transform T shows the improvement of about 7dB in
PSNR and how our scheme mitigates the effect of lost descriptions.

In our simulations we fix the total number of bits available for
transform coefficients to be transmitted. In other words we main-
tain constant the value of the number of bit per pixel, i.e. the rate,
and use our degrees of freedom with the choice of the correlating
transform to change central and side distortions to get better overall
system performance. The value of 0.94 bits/pixel is obtained with a
budget of 60 bits to be allocated for N = 30 coefficients.

5. CONCLUSIONS

When a signal is transmitted over a lossy channels the effect of era-
sures may be disruptive at the receiver if some countermeasures are
not adopted. The scheme proposed here copes with losses mitigat-
ing the effect of erasures in such a way that a acceptable quality
of reconstruction is still possible. This goal is achieved through
a simple modification to standard transform coding applied to im-
ages, such as DCT, and simulations show considerable improve-
ments (about 7dB in PSNR) under heavy losses condition. These
results also confirm our theoretical simulation performed in earlier
works [1].

Further work is being carried out to find better algorithm to
determine optimal correlating transform. We are considering more
realistic and accurate channel models in order to improve robustness
to source-channel changes. Concerns are also about the structure of
the correlating transform to reduce the number of free parameters to
optimize and to allow more efficient implementation of coding and
decoding operations.

A. DERIVATION OF THE GRADIENT

The derivation of the gradient (4) is based on technique of differen-
tial matrix calculus which means that all derivatives are not calcu-
lated element by element, but respect to the whole matrices. Deriva-
tives, as suggested in [10], are computed from differentials, there-
fore we first derive the differential of the term inside the expectation
in the cost function φ(T)

d(tr(RyT
T PT (P(TRyT

T +Rη )P)−1PTRy)). (5)

respect to the matrix T. Note the there is also an implicit depen-
dence from T through Rη according to eq. (2). Manipulation of
(5) is performed using the following properties
• d(tr(CD)) = tr(dCD+CdD),
• d(FGFT ) = FdGFT , where F is a constant matrix [10, p. 174,

eq. (5)],
• d(G−1) = −G−1dGG−1 [10, p. 183, eq. (17)],
• tr(AT (B�C)) = tr((AT �BT )C) = tr((AT �CT )B), [10, p.

46, Th. 7].

We obtain

d(·) = 2tr(RyWdT−RyT
T WT WdT)

−tr(((WT W)�B)(dTRyT
T )

+((WT W)�B)(TRy(dT)T )

= 2tr(RyWdT−RyT
T WT WdT

−RyT
T ((WT W)�B)dT),

and using the identification table [10, p. 176, Tab. 2] and observing
that

d(·) = tr(CdT) = (vectCT )T d(vectT),

we get
∂φ
∂T

= CT
,

which leads to the gradient expression (4).
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