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ABSTRACT 
In radio astronomy, the radio spectrum is used to detect 
weak emission from celestial sources. By spectral averaging, 
noise estimation is reduced and weak sources can be de-
tected. However, more and more observations are polluted 
by man-made radio frequency interferences (RFI). The im-
pact of these RFI on spectral measurement ranges from total 
saturation to tiny distortions of the data. To some extent, the 
final spectral estimation can be preserved by blanking in-
fected channels in real time. With this aim in view, a com-
plete real time processing line has been implemented on a 
set of FPGA and DSP. The current functionalities of the sys-
tem are high dynamic range (at least 70 dB), band selection 
facilities (from 875 kHz to 14 MHz), high spectral resolu-
tion through polyphase filter bank (up to 8192 channels with 
49152 coefficients) and real time time-frequency blanking 
with a robust threshold detector. 

1.� INTRODUCTION 

Radio astronomy, in common with many other users of the 
radio spectrum, has the advantage of a few protected fre-
quency bands. However, most scientific questions find their 

answers in unprotected bands where radio astronomy is not 
a primary user. Moreover, even in the protected bands, out-
of-band emission regulations are not always sufficient to 
prevent the pollution of astronomical primary bands. As a 
result, an increasing number of observations become unus-
able.  
In practice, the energy flux received from astronomical ob-
jects is very weak, typically less than a few Jansky (1 Jansky 
is 10
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 watt per square meter per hertz). Thus, depending on 
the radio telescope sensitivity, the signal-of-interest (SOI) to 
noise ratio is generally around -50 dB. However, source 
detection can still be done by estimating the spectral infor-
mation over an averaging time τ with a spectral resolution 
B. For instrumental considerations, the averaging time τ is 
chosen between a few seconds to a few minutes. If any RFI 
emission occurs during this averaging time, the whole spec-
tral estimation is infected (see Fig. 1.a, Fig 1.b and Fig. 4.a), 
unless a fine blanking of the data can be applied (see 
Fig. 1.a, 1.c and 1.d). 
Unfortunately, classical radio telescope spectral receivers are 
not designed to operate in such hostile conditions. First, 
their poor dynamic range induces non-linearity, which 
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Figure 1 : Impact of a finer time-frequency resolution associated with blanking of RFI. (a) the initial set of data represented 
in the time-frequency plane. (b) Estimated spectra obtained with classical receiver. (c) RFI detection and blanking with 
finer time-frequency resolution. (d) Estimated spectra after blanking. The SOI can be recovered which was not the case in 
(a). 
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spreads the RFI over the whole spectrum. This problem can-
not be overcome by an automatic gain control because of its 
negative impact on the receiver sensitivity. Secondly, the 
analogue filters used in such systems do not provide enough 
frequency rejection. Thirdly, their spectral resolution and 
channel rejection are often too limited to extract the free 
channels from the corrupted ones. Finally, their hardware 
architecture is too specific to allow additional functions, 
such as RFI detection, to be implemented.  
In this paper, the design of a robust radio astronomy receiver 
is presented. It has been specifically designed for the single 
dish telescopes of the Nançay observatory (France). First, 
the overall architecture is given. Then, the band selection 
implementation is detailed. Afterwards, the high resolution 
polyphase filter bank is described. Finally, recent results of a 
real time RFI detection algorithm implemented in the re-
ceiver and applied on actual observations are shown. 

2.� ROBUST RECEIVER ARCHITECTURE 

Figure 2 describes the global architecture of the robust re-
ceiver (RR). It can be seen as eight parallel receiver lines. 
An analog section shift the signals from the antennas’input 
frequencies  to an intermediate frequency (IF) of 70 MHz, 
providing a final useful bandwidth of 14 MHz. Depending 
on a switch matrix configuration, each of the 8 inputs can be 
connected to one or more receiver lines.  The digital section 

corresponds to a succession of digital modules plugged on 
PCI boards (HEPC9 and HERON modules from Hunt Engi-
neering). Each of the 8 digital processing banks includes a 
14 bit ADC, 1 FPGA VIRTEX II 1000, 1 FPGA VIRTEX II 
3000 with 256 Mo external RAM and 2 DSP TMS 6203.  A 
powerful industrial PC is used to drive 2 digital processing 
banks. The four necessary PCs are connected via a fast 
Ethernet link to a central computer for further data analysis, 
compression and storage. The primary function of the RR is 
to perform high resolution spectral analysis. This functional-
ity has been implemented in the two FPGAs (see next sec-
tions), leaving the DSPs still available for post detection RFI 
mitigation techniques. Besides, all digital processing lines 
can be reconfigured and merged together to perform any 
other digital processing, such as specific radio astronomical 
observations or complex RFI mitigation techniques.  

3.� BAND SELECTION IMPLEMENTATION 

From IF 14 MHz bandwidth, a frequency band (between 14 
MHz to 875 kHz) is first digitally down converted to base 
band. The down conversion is digitally achieved in two 
steps. First, an undersampling is applied with a 56 MHz 
sampling frequency. Then, a direct digital synthesizer (DDS) 
followed by successive decimation filters selects the band of 
interest.  
The decimation filters have been optimized both to mini-
mize the hardware and to maximize the frequency selectiv-
ity.  Thus, five half-band filters have been implemented to 
process the first decimation steps. A final selective FIR filter 
with 83 coefficients (17 bits) completes the processing. The 
final dynamic of this set of filters is 75 dB. 
In terms of hardware implementation, with a good use of 
half-band properties, polyphase structures and resource shar-
ing, a reduction of the hardware resources required is possi-
ble. Thus, only 38 multipliers are used for the whole imple-
mentation of the DDC. This design has been fitted in a 
VIRTEX II 1000. The input flow is 56 MHz with 14 bits 
real data, and the maximum output flow is 14 MHz with 16 
bits complex data. The next step is the spectral analysis. 

4.� SPECTRAL ANALYSIS IMPLEMENTATION 

The spectral analysis has two functions.  The first one is to 
provide spectral information on the SOI to radio astrono-
mers. The second one is to make an ad hoc segmentation of 
the time frequency plane with a view to performing the best 
RFI blanking.  
In practice, given the large flow of data to be processed, 
classical radio telescope receivers use coarsely quantized 
correlators to perform this spectral analysis [1]. In our RFI 
context, this method is not well suited and Fourier Trans-
form has been preferred. Depending on the RFI properties 
(see next section), the time-frequency resolution must be 
reconfigured. Thus, two methods have been designed for the 
FPGA VIRTEX II 3000. In both cases, the output is the set 
of channel square modulus coded with either 32 bits or 48 
bits. 
For a better time resolution, a weighted 2048 bin FFT with 
50% overlap can be downloaded in the FPGA. The maxi-
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Figure 2 : Overview of the robust receiver. The flow can 
be reconfigured to share the calculation power between 
all the banks. 

Figure 3 : Comparison of the spectral resolution and channel 
rejection between a Blackmanharris windowing and a poly-
phase filter bank with 49152 coefficients. 
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mum time resolution is then 73.14 µs for 14 MHz band-
width.  
For better spectral resolution, an 8192 bin polyphase filter 
bank [2] with 50% overlap can be used. The low-pass filter 
model needs 49152 coefficients which are stored in the 
16 bits external RAM in Q15 format. In figure 3, the per-
formances in terms of channel rejection and spectral resolu-
tion are shown. With the polyphase filter bank, the maxi-
mum frequency resolution is 107 Hz for an 875 kHz band-
width. The implementation is in progress and final results 
will be presented at the time of the conference. 
A pre-integration of the spectra can be done inside the 
FPGA. Without pre-integration, the output flow is twice the 
input flow in the 32 bits mode (due to the 50% overlap). The 
output spectra are sent to the DSPs for disk storage or fur-
ther processing such as RFI detection. 

5.� EXAMPLE OF REAL TIME ROBUST 
DETECTION ALGORITHM 

Since the SOI is assumed to be a stationary Gaussian noise, 
we can choose to remove all the values which differ from 
the expected probability density function [1, 3, 4]. The algo-
rithm currently implemented calculates a threshold level on 
the power spectral density and marks every points of the 
time-frequency domain that exceeds this value.  
The calculation of the reference mean and of the reference 
standard deviation has to be robust to RFI (i.e. the ideal al-
gorithm must give the same value for a corrupted signal or a 
clean one).  Tests have shown that the usual formulae (Equ.1 
and 2) do not apply for our problem.  As a matter of fact, 
RFI are so strong that even a small number of them can sig-
nificantly modify the mean and standard deviation values.  
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where X(i) is a time-frequency point in the dynamic 
spectrum. 
The solution is, on one hand, to replace standard deviation 
by absolute distance (Equ. 3) so high values do not taken too 
much importance (no squared values) and, on the other 
hand, to use median filtering algorithm techniques instead of 
averaging to calculate mean and absolute distance.   

 
1

1
( )

�

	

$EV'LV ; L
1

µ
=

= −∑  (3) 

Median filtering sorts the set of data and returns the value of 
the sample located halfway in the ranking. This filter is usu-
ally used in image processing to remove impulse noise, ex-
actly what has to be removed in the studied time-frequency 
domain.  Our implementation is based on the Quicksort al-
gorithm [5] that optimises sorting for large sets of data. 
The algorithm has been implemented on a fixed point DSP 
TMS320C6203 (Texas Instruments).  The DSP/BIOS is runs 
3 tasks: one reading raw spectra from the FPGA chain, one 
handling the blanking and the last one writing processed 

spectra toward the host PC. The code was optimized to 
speed up the calculation. The system was configured to re-
cord 2048 bin spectra of 7MHz bandwidth at a rate of 
2.3 ms (an integration of 16 spectra is done in the FPGA 
before detection).  
This technique has been used to observe the mega maser III 
ZW35 that is located in the band also used by a constellation 
of LEO (Low Earth Orbit) telecommunication satellites.  
Their TDMA and FDMA modulations lead to RFI bursts 
spread in time and frequency (see Fig. 5). The source corre-
sponds to a flux of 150.10-3 Jansky and it cannot be seen 
with traditional receiver (see Fig. 4.a).  
In our experiment, the mean and absolute distance are ex-
tracted in real time as described previously. The detection 
threshold level is equal to the mean value plus 8 times the 
absolute distance value (equivalent to mean value plus 5 
times the standard deviation).  Two kinds of blanking are 
applied: 

• Full spectrum blanking: the complete spectrum is 
blanked as soon as one canal exceeds the threshold.  
The loss in data was about 20%. This kind of 
blanking can be efficient to suppress broadband 
RFI such as radar or to guarantee very clean obser-
vations. 

• Time-frequency block blanking: This method is 
more time consuming, but the blanking is more 
precise. In our example, the loss in data was only 
2.5%. 

Actually, in both cases, 7 minutes of averaging is sufficient 
to see the unmistakable shape of III ZW35 (see Fig. 4.b). In 
Fig. 5, the areas marked as corrupted are set in shaded red 
tones. It can be clearly seen that the RFI have been well de-
tected.  

 

6.� CONCLUSIONS 

In this paper, the digital implementation of a new generation 
of radio astronomical receivers has been presented. Our sys-
tem is robust towards RFI by providing improved linearity, 
higher frequency rejection and better spectral resolution 
compared to current receiver designs. Thus, the signal integ-
rity can be preserved and RFI mitigation techniques can be 
envisaged. Our system is fully reconfigurable and can be 
adapted to any RFI context. With a simple but robust algo-
rithm, a radio astronomical source, unobservable for several 
years, has been rediscovered. Now, the key point is the de-
velopment and the implementation of other efficient RFI 
mitigation algorithms.  
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Figure 5: Time-frequency plane with the RFI bursts. The detection threshold level corresponds to mean value plus 5 times the 
standard deviation. The detected time-frequency areas are colored in red shaded tones. The spectrum attenuation corresponds to 
the receiver filter shape. 

 

 

Figure 4: Spectra of IIIZW35 after a 7 minutes time integration. (a) without blanking. The Y-axis is scaled so that the SOI ex-
pected profile (in continuous red line) can be seen. Some RFI bursts are 26 dB stronger than the SOI level.   (b) with real time 
blanking. The IIIZW35 source is clearly visible. The last detection of IIIZW35 was performed off-line with stored data 
in1999 [6]. 
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