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ABSTRACT

In this work, we propose a simple, yet flexible channel esti-
mator for MIMO-OFDM systems. It works in the frequency
domain, by interpolating among the estimates done in a small
number of subcarriers. Our estimator can be easily used in
either acquisition (preamble-based) or tracking (pilot-tones
based) mode, and its structure remains the same for any type
of training pattern in the two-dimensional time-frequency
space. We also propose efficient preambles that allow iden-
tification of the MIMO channel with the lowest sacrifice in
data rate. The training sequence we advocate consists of a set
of OFDM symbols endowed with orthogonality properties,
whose duration is much lower than the number of OFDM
subcarriers, and which is robust against frequency misalign-
ments. The feasibility of our approach is substantiated by
computer simulation results obtained for IEEE 802.16 broad-
band fixed wireless channel models.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
choice for a variety of wideband applications due to its ro-
bustness against frequency selective channels. Its combi-
nation with Multiple-Input Multiple-Output (MIMO) tech-
niques adds a third dimension (space) in which degrees of
freedom can be generated, and is expected to yield a dra-
matic increase in capacity, coverage, and reliability over ex-
isting systems for broadband communication. Recent sys-
tem field tests have assessed the attractiveness of MIMO-
OFDM [1], which is believed to play a major role in future
next-generation 4G wireless communication systems.

In this work, we focus on the problem of channel es-
timation in this three-dimensional (3D) scene. Specifi-
cally, we examine the impact that the introduction of a
channel-estimation preamble has on the overall system per-
formance of the MIMO-OFDM system. While most works
on MIMO-OFDM assume perfect CSI at the receiver, of late
the problem of channel estimation has received some atten-
tion [2, 3, 4].

Our channel estimator operates per-subcarrier in the fre-
quency domain; it is a very simple and flexible scheme that
can be employed to any type of time-frequency distribution
of pilot information. We also propose novel preambles for
this 3D scene making use of time and frequency dimensions,
which yield a very efficient and flexible structure to identify
all MIMO multichannels; this design is of high importance
in the case of using pilot tones (typically employed in fast-
fading mobile channels), where we are limited in the number
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of subcarrier positions that can be used to track the channel
variations. We show the performance of our estimator by
simulating its behavior on frequency-selective fading chan-
nels typical for IEEE 802.16 broadband fixed wireless envi-
ronments.

This paper is organized as follows. Section 2 briefly
presents the system model for MIMO-OFDM systems. A
channel estimation algorithm based on a frequency-domain
procedure is developed in Section 3, and efficient preamble
design for MIMO-OFDM systems is presented in 4. Simu-
lation results and discussions are provided in Section 5. Fi-
nally, conclusions are drawn in Section 6.

2. SYSTEM MODEL FOR MIMO-OFDM

We consider a MIMO frequency-selective slow fading chan-
nel with ¢ transmit and r receive antennas described by the
following equation:

L-1
Yn= ; ngn_g +z, (1
=0

where # is the discrete-time index, x,, is the column ¢-vector
whose components are complex symbols belonging to an
elementary two-dimensional constellation (M-ary PSK or
QAM) and are transmitted at time n, (H,,...,H; ) is a
sequence of X ¢ matrices describing the channel impulse re-
sponse, z, is the noise vector of » components at time 7, each
of them being a zero-mean circularly-symmetric complex
Gaussian (ZMCSCG) random variable (i.e., a random vari-
able with independent Gaussian-distributed real and imagi-
nary parts with zero mean and same variance) with variance
N, (two times the variance of the real or imaginary parts),
and y, is the received signal r-vector at time 7.

Then, we focus attention on a block of N consecutive
time intervals. We will refer to vectors x, as time-domain

vectors and to vectors X, as frequency-domain vectors. The

DFT transform pair can be written in a compact form as !

X =XQ, — X =XQj, 2)
where X £ (X, ..., Xy_)s X2 (Xg---»Xy_;), and
A 1 —j21kn/N N
W= N (e )k,n=o ©)

is named the DFT unitary matrix. We call OFDM symbol a
row of X. Typically, N is a power of 2 in order to allow an

'We define the Hermitian conjugate of a matrix A as AT, If B = AT

then (B), ; = (A)7,.
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efficient implementation of the DFT through a Fast Fourier
Transform (FFT) algorithm.

Assuming the transmitted vectors satisfy the cyclic prefix
condition x,, = Xy, form = —L,..., —1,2 we can trans-
form the whole time-domain channel equation (1) and obtain
the following frequency-domain equation:

v, =HX, +7, k=0,...,N-1 (4

Thus, the channel input-output relationship is written as a set
of N independent scalar equations. Each equation describes
one of N independent additive white Gaussian noise chan-

nels, with » X ¢ matrix gains H « The latter is the channel’s
frequency response sampled at the kth subcarrier frequency. 3
To account for the transmission of a sequence of OFDM

symbols, we rewrite the frequency-domain channel equation
as

V.(0) = H (0%, (0) +7,(0) k=0,...,N—1
)

where £ = 1,2,...,L, is the time index and we consid~er Ly
consecutive OFDM time intervals. Assuming that H,(¢)
does not change when / ranges from 1 to L, so that H, () =

H,, we can write the frequency-domain channel equation in
a more compact form as

Y, =HX, +Z k=0,....N—1 (6)
where
Xk = (ik(l)a 7§k(Lx))
Yk = (yk(l)a--ayk(Lx))
Zk = (ik(l)7~~7§k(Lx))

Following a common approach, information is transmit-
ted in the frequency domain so that the symbol matrices X,
are generated first, then disassembled in the vectors X, (/)
(¢ =1,...,Ly) which are transformed, by a set of IDFT, into
the vectors x,(¢) and transmitted through the channel.

At the receiver, the matrices ?k are formed by properly

assembling a set of DFT of the received signals y ,(¢). Next,
the detection rule

X¢ £ arg min ||\~(k - ﬁzfikﬂz 7
X

k

is used, where a superscript ¢ denotes an estimated quantity.

A simpler detection algorithm in the case of uncoded
transmission consists of multiplying ?k by the Moore-
Penrose pseudoinverse of ﬁe, a procedure known as zero-

forcing equalization, followed by symbol-by-symbol deci-
sion.

2 A cyclix prefix (CP) of length Lep is appended to each OFDM symbol
at the transmitter and removed at receiver side. Thus, a frequency-selective
channel is transformed into a set of N parallel flat-fading subchannels [5].

3We assume that the channel does not change during the transmission of
a single OFDM symbol.

3. CHANNEL ESTIMATION

Channel estimation algorithms depend on the type of training
information included in the transmitted data [5]. We can cat-
egorize the placement of these known data in MIMO-OFDM
as headers [2, 3, 4, 6], pilot tones [7], or scattered pilot sym-
bols [1]. Here we focus on the case of a training sequence
as a header or preamble at the beginning of a packet, with
L, known OFDM symbols, where L, denotes the length of
the training sequence in number of #-tuples of OFDM sym-
bols. It is assumed that the channel remains constant over a
certain time interval, after which channel estimation will be
repeated. We might also assume that these L, known OFDM
symbols are detected in a decision-directed scheme, so the
channel estimator we are going to develop in the following
is a generic procedure. Assume in Eq. (6) that X, (¢) = p,(¢)

for{=1,...,L, and denote f’k = (Py(1),...,p;(Lp)) as the
sequence of pilot symbols transmitted on the kth subcarrier.
Then, we have

Y, =HP, +7Z, (®)

Since to estimate the r X ¢ matrix ﬁk we need at least rt

measurements, and each Y & yields rL, measurements at the
receiver, we need to guarantee that L, > ¢. The channel ma-

trix H,, can be estimated according to a maximum-likelihood
(ML) criterion in the frequency domain. This criterion allows
the estimate to be performed without any additional knowl-
edge of channel parameters (as it would be the case with
minimum mean-square error estimate). Under the Gaussian

noise assumption, the ML estimate INIE of ﬁk given the ob-

servation Y, is obtained by minimizing with respect to H k
the quadratic norm

HS, = argmin 1Y, —H,P,|? 9)

k

where ||A[| denotes the Frobenius norm of matrix A. The
solution is well known to be

Hlev[L,k = YkPk+

(10)

where f’,j is the Moore-Penrose pseudoinverse of matrix P P

If (f’kf’]t)*l exists, then P = f’z(f’kf’;:)’l, and we may

write N o
Hi = H, +Z,P; (1D

where the second term of this expression accounts for the es-

timation error, and hence HS,; , is an unbiased zero-forcing

estimator. By defining the error matrix
E 27 pt+
E,=ZP; (12)

it can be observed that its elements are ZMCSCG random
variables with covariances

E{(E,); (B o} = NS, (PPD™)5,  (13)

The error is white if the pilot matrix P & has orthogonal rows
(i.e. pilot sequences across different transmit antennas are
orthogonal):

PP/ =L,ET, (14)
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where E), is the average energy per pilot symbol and I, de-
notes the ¢ x ¢ identity matrix. If P, satisfies (14), then the el-
ements of E, have variance 02 = N,/(L,E ), where we can

observe that g2 is inversely proportional to L »» the length of
the training sequence, and to £, its energy.

3.1 Remarks on the implementation of the estimation al-
gorithm

The channel estimator (10) operates in the frequency domain
per subcarrier, which leads to a simple yet flexible structure
as we shall show. From Eq. (10), P;{" can be precomputed
and stored for each subcarrier £. Then channel estimation
consists of a multiplication between the received data at that
subcarrier for all receive antennas, and this precomputed ma-
trix. This procedure has low complexity and speeds up chan-
nel estimation process, which is of crucial importance for
practical implementations of MIMO-OFDM. Also, it turns
out to be very flexible for other pilot information scenar-
ios than preamble-based due to its implementation per sub-
carrier; it is well suited to application in pilot-tones or 2D-
PSAM scenarios, as it may be required in mobile fast-fading
environments. This feature makes it differ markedly from
previously proposed schemes based on estimation in the time
domain [2, 3, 4], which cannot be easily applied to scenarios
other than preamble-based. Additionally, the complexity of
the scheme proposed in [2] is higher, as it requires matrix in-
version to perform channel estimation; in [3], complexity is
reduced by using previous estimates.

4. DESIGN OF THE MIMO-OFDM PREAMBLE

The design of the MIMO-OFDM preamble consists of defin-
ing the pilot OFDM symbols P, for k=0,...,N — 1 in order
to estimate the channel impulse response (H ,...,H, _,).

If the frequency selectivity of the channel is low, then one
may estimate the channel matrix over a subset X of subcarri-
ers with cardinality N, = |X| (N, < N), and then interpolate
over the other subcarriers by using, for example, DFT tech-
niques with zero-padding in the time domain [8, 9]. If the
channel impulse response has a maximum of L resolvable
paths (and hence of degrees of freedom), then N, must be at
least equal to L (which is related to the channel coherence
bandwidth).

Then, to completely identify the MIMO channel we can
make use of the additional time dimension (L ,) we have in-
troduced. In fact, in order to be able to estimate » x ¢t X L
parameters using » X L, X N, measurements, the following
inequality must hold:

Ly XN, >txL (15)

On the contrary, a strict frequency-domain design, such as
the one in [4], allows one to consider only one OFDM in-
terval for training, i.e., L, = 1. Hence, requirement (15) be-
comes

Ny, >txL (16)

which is clearly more stringent than (15). This design can be
extended to the case of pilot tones or 2D-PSAM signalling,
since in these cases the number of pilot tones for tracking
purposes N, is kept to a minimum (to avoid decreasing un-
duly the data rate). The solution is the proposed scheme,
that moves part of the required pilot information to the time

dimension, with a joint time-frequency distribution of pilot
symbols

The system efficiency (i.e., the ratio of the transmitted
data symbols to all symbols in a packet) assuming that the
OFDM data block consists of L, OFDM symbols is given by

NL,
L

packet

where L, o £ (Lep + N)Ly + (Lep + Np)L,, is the length
of one packet in terms of sampling intervals, accounting for
the preamble and the data part, and also including the CP
overhead (Lp > L sampling intervals) along the packet.

5. PERFORMANCE EVALUATION

A scenario for IEEE 802.16 fixed Broadband Wireless Ac-
cess Standard has been considered [10, 11]; we use the Mod-
ified Stanford University Interim SUI-3 channel model, with
L = 3 taps, a maximum delay spread of Tpax = 1 s, and max-
imum Doppler frequency f;, = 0.4Hz. Each OFDM symbol,
with N = 64 subcarriers each one carrying a QPSK symbol,
is appended a cyclic prefix to overcome the delay spread Tmax
of the channel. For transmission, we have chosen a channel
bandwidth of W = 2 MHz. Since we sample at Nyquist rate,
this yields a sampling interval Ty = 1/ f; = 0.5us; this means
Lop = 2. We perform spatial multiplexing of the data se-
quence, and then » > ¢.

All results assume L, = f unless otherwise stated. Figs. 1
and 2 show the effect of a reduction in the number of pilot
subcarriers at the preamble N, on the MSE for several sys-
tem configurations. It can be clearly observed that there is
a negligible degradation when N, is reduced, until its value
crosses a threshold equal to the number of channel paths that
must be identified: in our case the number of paths requires
Np > 3. Then, a value of N, = 2 turns out to be insufficient.
Also, if we guarantee channel identification by using N, = 4,
we have observed how performance improves slightly as L,
increases over the minimum required value L, =1t.

MSE of channel estimation
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Figure 1: Channel acquisition error induced by different
number of pilot symbols at the preamble for a 2 x 2 system.

Figure 3 shows bit error rate (BER) performance versus
the number of pilot subcarriers at the preamble N, fora 2 x 2
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Figure 2: Channel acquisition error induced by different
number of pilot symbols at the preamble for a 4 x 4 system.
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Figure 3: BER for different values of (V) in a 2 x 2 system.

system. We assume a block-fading channel, so that channel’s
impulse response remains constant along each packet; also,
only the first L = 3 estimates of H, are used while the other
(N — L) estimates are reset to zero. It is interesting to note
that there is no BER degradation when N, decreases, which
confirms the validity of our proposed preamble.

Table 1 summarizes system parameters; packets contain
Ly =20, 1i.e., LyNM = 2560 data bits per packet. The over-
all duration of the data part and the preamble are L (L, +
N)T; =0.66 ms and L, (Lp+ N,) T, respectively. Packet du-
ration accounts for both (preamble+data) durations. We ob-
serve that, with NV, = 4, the system efficiency is about 96%.

6. CONCLUSIONS

We have described a simple channel estimator for MIMO-
OFDM systems. It works in the frequency domain, by in-
terpolating among the estimates done in a small number of
subcarriers. Our estimator can be easily used in either acqui-
sition (preamble-based) or tracking (pilot-tones based) mode,
and its structure remains the same for any type of training

R, [Mbits/s] | PD [ms] | PKD [ms] | n (%)
N, = 64 7.0523 0.066 0.726 88.15
N, =32 7.3775 0.034 0.694 92.22
N, =16 7.5516 0.018 0.678 94.40
N, =38 7.6418 0.01 0.67 95.52
N, =4 7.6877 0.006 0.666 96.10

Table 1: System parameters, where PD denotes *Preamble
Duration’ and PKD denotes *PacKet Duration’.

pattern in the two-dimensional time-frequency space. We
have also described the choice of efficient preambles that al-
low identification of the MIMO channel with the lowest sac-
rifice in data rate. The feasibility of our approach was sub-
stantiated by computer simulation results obtained for IEEE
802.16 broadband fixed wireless channel models.
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