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ABSTRACT

Multistage implementation of decimators is in many
cases more efficient than single-stage one. However, if the
decimation ratio is prime, it cannot be factorised into a
product of smaller integer factors. Previously it has been
proposed that a rational decimation stage can be used to
enable arbitrary selection of the decimation ratios. This way
the advantages of multistage decimation and special filter
structures such as halfband filters become available
regardless of the overall decimation ratio. In this paper, we
propose a method for optimising the overall response of such
multistage decimators. Imaging and aliasing phenomena in
such decimators are analysed, an iterative design method is
introduced, and design examples are given. The proposed
method can also be used for non-prime decimation ratios
when their prime factors are not favourable for multistage
implementation.

1. INTRODUCTION

Sample rate conversion (SRC) often requires less
computation effort when implemented in multiple stages.
Even though multistage implementation increases the
computation rate of some filter coefficients, the overall
computation rate and required coefficient storage are
reduced. Moreover, multistage implementation relieves
wordlength requirements of both signals and filter
coefficients, which further reduces the computation effort.
(1]

Another benefit of multistage SRC is that special filter
structures can be used. For example, halfband filters are
efficient in decimation by two because one of their polyphase
branches is a pure delay [1]. Cascaded integrator-comb
decimators [2] are efficient due to their simple, multiplier-
free structure but they perform well only with relatively
narrow stopbands. The benefits of both of these structures
can be best exploited in multistage decimation.

Unfortunately, multistage implementation requires the
decimation ratio to be factorisable. Thus, ordinary multistage
implementation is not possible for prime conversion ratios.
Even if the conversion ratio is not prime, its prime factors
may not allow the full efficiency of multistage
implementation.

Usually, disadvantageous SRC ratios can be avoided by
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system design decisions by choosing suitable sample rates.
However, the coexistence of multiple different standards in,
e.g., wireless communications and audio systems may lead to
situations where there is little freedom to choose sample
rates.

In [3], the authors propose the use of a stage decimating
by a rational, noninteger ratio in order to allow multistage
decimation when the overall decimation ratio is prime. The
use of the rational stage enables arbitrary selection of
decimation ratios. Usually, fractional SRC has been avoided
when possible due to its (seemingly) higher complexity in
terms of both computations and analysis of aliasing and
imaging. The operation of efficient structures for fractional
SRC is also somewhat harder to understand than that for
integer SRC. However, the advantages of enabling efficient
multistage implementation can compensate for and exceed
the complexity penalty of a rational decimation stage.

In the following section, the proposed decimator
structure is presented, and its imaging and aliasing
phenomena are analysed. In Section 3, an iterative method
for designing such decimators is introduced. Design
examples are given in Section 4, and conclusions are drawn
in Section 5.

2. THE DECIMATOR STRUCTURE

Multistage decimation and arbitrary factorisation of an
integer decimation ratio L becomes possible if one stage is
made to decimate by a rational ratio L/ K. The product of
the decimation ratios of the other stages must then equal K in
order to obtain the overall decimation ratio L. Above, L and
K are defined to be relatively prime, i.e., they do not have
common factors. The proposed structure, and some
equivalent structures used for analysis, are shown in
Figure 2.1.

The parameter K is chosen so that it can be divided into
factors K,

s
K—anlKn. (2.1)
The rational stage and the integer stages can be placed in any
order. The number of stages, S, as well as the values and
order of the decimation ratios affect the efficiency of the
system. The optimum also depends on the filter structures
and implementation techniques used. Often it is best to place
the rational decimation stage before integer stages in order to
relieve its requirements [4].

The rational stage can be analysed using an equivalent
structure shown in Figure 2.1(b) [5][6]. In this model,
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Figure 2.1. (a) The proposed multistage decimator.
(b) An equivalent of the rational stage used for analysis.
(c)(d) Structures equivalent to (a), used for analysis.

rational decimation by L/ K is performed by upsampling by
K, antialias/anti-image filtering and downsampling by L.

The multistage decimator can be analysed using the
single-stage equivalent depicted in Figure 2.1(c). It can be
observed that both the up- and downsampling ratios in this
model are divisible by K. This leads to the equivalent
structure of Figure 2.1(d). Here, Hp(z) is one of the K
polyphase components of H(z) such that

h[n]=hlk+Kn], k=0,. ., K-1 (2.2)

and
K-1
HE@=3

In this paper, H(z) and H (z) are referred to as the
unsampled overall transfer functzon and effective transfer
function, respectively. The value of p, i.e., which polyphase
component appears as the effective response, depends on the
delay d that appears together with H(z) between the up- and
downsampler in Figure 2.1(c). This delay models both the
delays of actual filter stages and the possible phase
difference between the input and output clocks of the rational
stage.

The selection of the sampling phase p has an effect on
both the magnitude and phase response. Even if { #[n]} is
symmetric, i.e., has a linear phase response, only one or two
of its K polyphase components will be symmetric. It is even
possible that there are no symmetric polyphase components
at all. The number of symmetric polyphase components
depends on K and the length of { #[n]}, the latter of which,
in turn, depends on the stagewise orders and decimation
ratios. Table 2.1 summarises the number of symmetric
polyphase components.

z7*H , (zK). (2.3)

Table 2.1: Number of symmetric
polyphase components of {/[n]}.

Length of {h[n]}
Even Odd
Even 0 2
Odd 1 1

Because the upsampling by K in the rational stage is
cancelled by the integer stages, no images occur at the output
of the last stage. All images of a given input frequency alias
to the same output frequency, summing together coherently
— all phase differences between them are due to the filtering

Basis filter

Basis filter —-I >

Figure 3.1. Decomposition of a filter (response)
as a linear combination of basis filters.

and are independent of the signal.

If the overall decimation ratio is non-prime, the proposed
method can be applied to any of its divisors. The remaining
factors will then be implemented in ordinary integer
decimation stages. Consider an overall decimation ratio of

NL
Ltot:Ll_Inzan’

where L will be factorised using the proposed method and
L,’s will be implemented as integer decimation stages. The
rational stage as well as the stages decimating by L,’s and
K,,’s can again be placed in any order.

3. FILTER OPTIMISATION
In this section, we introduce an iterative method for

optimising the proposed class of multistage decimators in the
minimax sense using linear programming.

2.4)

3.1 Suboptimal design

Arbitrary factorisation can be applied using existing
multistage filter design methods and tools. However, this
means that the coherent summation of aliased images is
ignored, which results in suboptimal performance. For
example, even if the unsampled overall response is made
equiripple, the effective magnitude response is not. The
worst-case loss in stopband attenuation is 20 log,,K dB.

3.2 Image-aware design

An equiripple magnitude response can be obtained by
taking the aliasing of images into account in filter design.
This can be equivalently done either in the frequency or time
domain.The time-domain approach, based on the effective
impulse response {h [n]}, is preferred due to its lower
computational complex1ty Thus, we obtain the following
design problem: Minimise

m(%x W(o))||Hp(eJ‘°)| —D(o))|, 3.1
where D(w) and W(w) are the desired magnitude and error
weighting function, respectively.

Below, an iterative algorithm for optimisation of the
proposed decimators is presented. Each filter stage is
reoptimised multiple times, taking the responses of other
stages into account.

As a tool for optimisation, each subfilter as well as the
effective impulse response {h []} can be decomposed
into a linear combination of basrs responses, illustrated in
Figure 3.1. One basis response is needed for each
independent coefficient of the filter under redesign. Such
basis filters can be determined for many nonrecursive filter
classes. Let G, ,(z)'s form the basis of the st stage. When
optimising G (z) its basis filters are used for computing the
basis transfer functions of H (z) denoted as H, «(2).
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Here £ is the index of coefficient. The basis transfer function
H, , 1(z) is obtained by substituting G ,(z) for G(z)
and computing the effective response:

H,, (2)= Hp(z) |le(2) G (3.2)

el
The basis transfer functions G, ;(z) depend on the filter
structure. For example, for even-order symmetric direct-
form FIR filters they can be written in the (non-causal) form

1, k=0

3.3
+z7*k, k=1,2,.. (3-3)

g
Gs’k(Z) = D k
LF

The optimisation algorithm can be formulated as follows:

* Choose the filter parameters.

* Determine the sampling phase p. If two symmetric poly-
phase components of {#[n]} are available, usually the
longer one can be preferred since it can be expected to
provide a slightly better performance.

» For each stage, design a starting point impulse response
of the same length as that stage will have. Define as stop-
bands those frequencies that will alias to the passband or
(lowest) transition band of the overall specifications.
Choose filter parameters such that each stage reaches at
least the stopband attenuation required from the overall
response. The initial response does not necessarily need
to be realisable by the chosen filter structure. The gen-
eral shape of the frequency response suffices. For exam-
ple, the Remez multiple exchange algorithm can be used
for generating the initial responses.

+ Starting from the last stage, redesign each stage in turn
using the basis responses so that the effective response is
optimised.

+ Iterate the previous step multiple times. In the beginning,
use a sparse frequency grid to maximise speed. Make it
more dense for later iterations in order to obtain better
precision. A few iterations should be enough if the initial
responses are good.

If there are no symmetric polyphase components, linear
programming can still be used in optimisation with little
error if L is large. This is made possible by decomposing the
asymmetric effective basis impulse responses into the sum of
a symmetric and an antisymmetric component and ignoring
the latter in optimisation; in other words, the average of the
impulse response and its mirror image is used instead of the
impulse response itself.

The choice of the initial stage responses is important.
Experiments with Kronecker impulses as initial impulse
responses led to bad performance and very slow convergence
ifany. Notice that the algorithm does not explicitly divide the
filtering burden to the stages. In the optimisation of each
stage, all frequencies of the overall specifications are
optimised. This is quite different from ordinary iterative
optimisation of multistage decimators. Instead, the division
is implicitly determined by the initial responses — in a way,
other stages form a weighting function for the stage being
optimised.

Due to the coherence, the optimisation algorithm exploits
destructive summation of aliased images. For this reason, the

Table 4.1: Properties of example filters.

Delay [input sample intervals]
Weighted mul. rate [multiplications / output sample]?
Multiplication rate of basis multipliers of
transposed Farrow [muls / output sample]
Mul. rate; fixed coefficients
[multiplications / output sample]
Design Filter
parameters
1-stage FIR | N=130 66 0 66° 65
1-stage tr. Ny=14 35 76 63.5 [132.5
Farrow My=4
2-stage Noy=5 29 57 50.4 166
M, 0:3
Ni=30
3-stage Ny=5 53 38 67.3 2255
M, 0:2
N 1= 14
N,=38
4-stage Ny=3 72 38 86.3 | 205
M, 0:2
N, 1= 6
N 2= 14
N 3:34

a. 6 bit multiplications required by basis multipliers were
converted into equivalent 16 bit multiplications.

b.  Here it is expected that the symmetry of the prototype fil-
ter is fully exploited; if not, the multiplication rate is 131.

ripple levels of all stages will become approximately equal in
minimax optimisation. Thus, it becomes difficult to find the
bottleneck of the system by viewing the responses of the
optimised filter stages, i.e., which stage should have its order
increased. Instead, the bottleneck can often be found by
comparing the ripple levels of the initial responses, at least if
they are obtained from a filter of the same class as the actual
filters used at that stage.

The rational stage can be implemented efficiently
through polynomial interpolation using the transposed
Farrow structure [7][8]. In such filters, the impulse response
has a piecewise polynomial shape. Ultimately, if the overall
decimation ratio is large, the rational stage can be
implemented without computations as a hold-and-sample
operation, i.e., the latest available input sample is used for
each output sample. This is equivalent to a running sum FIR
filter in place of G,(z) in Figure 2.1(b).

4. DESIGN EXAMPLES

Three example multistage decimators were designed
using the proposed method: two-, three-, and four-stage ones.
As a reference for comparison, also two single-stage
decimators were designed; one was a polyphase FIR filter,
and the other was a transposed Farrow filter with bias-based
symmetrisation [9]. The parameters and properties of the
alternative designs are listed in Table 4.1. In the table, N, and
M, stand for the number of polynomial segments and
polynomial degree of the Farrow filter, respectively. The
overall decimation ratio was 19, and the permitted ripple
levels were 0.01 and 0.001 (—60 dB) for the passband and

1411



N
o
o

Magnitude [dB]
®
2.

©

AL

~100 0.2 0.4 0.6 0.8 1

Normalised frequency

Figure 4.1. Magnitude responses of the two-stage design:
(a) the rational stage, (b) the integer stage, (c) the unsampled
overall response, (d) the effective response.

stopband, respectively. The passband and stopband edges
were 0.4 and 0.6 times the output sample rate, respectively.
In the multistage designs, the transposed Farrow structure
was used at the rational stage, and halfband FIR filters were
used at the integer stages, each thus decimating by two.

From Table 4.1 it can be seen that the two-stage design is
the most efficient. It saves appr. 20% in the multiplication
rate with respect to the polyphase FIR reference. Notice also
that in the multistage structure it is easier to exploit the
coefficient symmetry of FIR filters, especially when using
halfband filters.

In Figure 4.1, the magnitude responses of the two-stage
design are shown. It can be observed that the peak stopband
ripple of the unsampled overall response exceeds the
specified ripple limit slightly. However, these peaks are
attenuated by destructive summation of aliased images,
resulting in an adequate effective response.

Tightening the attenuation requirements would turn the
situation more to the favour of the multistage designs, since
larger wordlengths would be needed for fixed coefficients
but the basis multipliers of the Farrow filter would remain
unchanged.

5. CONCLUSIONS
In this paper, we have shown how rational decimation can
be applied to enable multistage decimation or improve its
efficiency. The usefulness of the proposed filter design
method was demonstrated, and difficulties and pitfalls of the
method were discussed.

The reference designs used in this paper were not the
most efficient possible single-stage decimators. For
example, decimators constructed from allpass polyphase
branches [10] would probably be more efficient. If the
integer stages are implemented with the most efficient
algorithms, the efficiency of the rational stage will become
the main bottleneck.

Unfortunately, the proposed method cannot be used for
the optimisation of most recursive filter structures because
they cannot be decomposed into a linear combination of
basis filters. However, such stages can be optimised as if the
upsampling by K were not present. Alternatively, the
summation of aliased images can be taken into account in the
frequency domain.

The proposed structure and optimisation method can be
readily applied to interpolators as well.
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