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ABSTRACT

The wave digital filter (WDF) theory provides an elegant method for
the discretization of linear continuous filters which is well known
for possessing many desirable properties over other filter imple-
mentations. However, concerning nonlinear networks so far there
are only solutions for circuits with a single nonlinearity, as the
delay-free-feedback of the nonlinear element may result in delay-
free-loops for multiple nonlinearities. In this paper we present a
method to circumvent this problem by the introduction of a vector-
nonlinearity. We show how to incorporate multiple nonlinear ele-
ments in a WDF structure and how to implement this method using
the look-up-tables of the nonlinearities. This method of implemen-
tation is demonstrated for the scalar case by the well known Chua’s
circuit and for the vector case by a circuit with two real diodes.

1. INTRODUCTION

Wave digital filters (WDFs) can be considered to be digital models
of their continuous-time reference network. The discretization is
performed by the well-known bilinear transformation and the for-
ward and backward traveling wave quantities are used instead of
extrinsic and intrinsic physical variables (for example voltage and
current), see [1] for details. For an electrical circuit and voltage
wave variables the transformation from the Kirchhoff variables (K-
variables) voltage v and current i to the wave variables (W-variables)
a and b is given by (1), R is the so called port resistance.

(2)=(1 %) ()

WDFs include a set of advantages, like coefficient accuracy, dy-
namic range, stability under finite-arithmetic conditions and last but
not least a structure preserving implementation of the reference net-
work. Particularly due to their structure preserving property they
are widespread used in physical modeling and for the solution of
partial differential equations (see [2] for instance). Especially ap-
plications with high demands on efficiency, like sound synthesis by
physical modeling [3], take advantage of WDFs.

Concerning nonlinear WDFs, methods are proposed in [4] how
to incorporate a single memoryless nonlinearity in a Wave Digital
(WD) system. In [5] this method was extended to nonlinearities
with memory. However all these methods are restricted to single
nonlinearities, as the delay free feedback of a nonlinear WDF may
cause delay free loops in the entire network. In this paper we show
how to circumvent this problem by the usage of a vector approach.
Any arbitrary number of nonlinearities can be modeled by one sin-
gle vector-nonlinearity, so that the complete network is the com-
bination of one nonlinear vector-WDF with a delay free feedback,
adapted to the linear part of the network which includes a delay.

Furthermore we show how to practically implement networks
with multiple nonlinearities by using continuous piecewise linear
functions to approximate the characteristics of the nonlinearities.
By two examples it is demonstrated, how nonlinear systems can be
implemented efficiently without any iteration method.

This paper is structured as follows: Nonlinear Wave Digital
Filters are introduced in section 2. It is shown how nonlinearities
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have been modeled so far in a scalar fashion and how to extend this
method to vector nonlinearities. In section 3 the practical imple-
mentation of multiple nonlinearities by their look-up tables is dis-
cussed. For illustration, this method is demonstrated by the scalar
example of Chua’s circuit in section 4.1 and by a vector example of
two real diodes in section 4.2. Section 5 concludes this paper.

2. NONLINEAR WAVE DIGITAL FILTERS

In the following first a description for scalar nonlinear WDFs is
given and then extended to vector nonlinear WDFs. Without loss
of generality memoryless nonlinearities are used for the reason of
simpler notation. Nonlinearities with memory are introduced by
frequency dependent W-variables (see [5] for details).

2.1 Scalar Case

Any memoryless nonlinear network element can be described as a
subset of the vector space which is spanned by its port variables.
The only condition that must be fulfilled by the element to achieve
a unique solution for its port variables, is that it must halve the de-
grees of freedom of the port variables. For the scalar case with two
physical port variables, there must be a parametrization for on scalar
variable @, so that the nonlinear element can be described by

((I)-C

fi(a)

Using this graphical description of the nonlinear element, the tran-
sition from K- to W-variables can be simply interpreted as the linear
transformation of the coordinate system according to equation (1).
The nonlinear element is described by

t(8)I08) - (5@
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there the functions f;(a) and f, (a) are defined by
Ja(@) = fi(@) +Rf(a), C
fy(@) = fv(@) = Rfi(a). )

To achieve a reflected wave b = f, (Q) (see equation (5) as a func-
tion of the incident wave a the unique invertibility of £, (see equa-
tion (4)) is sufficient and necessary, so that the reflected wave b can
be written as
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Obviously f; I exists if f, is strictly monotonic, so if f; is continu-
ous and piecewise-differentiable, it has to fulfill the condition

>0 v fi<o. (7)

Note, that an explicit solution of f in the v X i-domain (i = i(v) for
instance) is not necessarily needed for a solution of f in the wave-
domain (b = b(a)). The special case , where i can be expressed
as i = i(v) is treated in more detail in [4] and is included here for

fr(a)=aand f;(a) =i(a).
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Figure 1: Principal diagram of a wave digital model of a circuit with
multiple nonlinearities.

2.2 Vector Case

The extension of wave digital filtering principles to the vector case
is straightforward and was already outlined in [6] and [2]. Here
it is important, that we can describe any n-port by the n x 1 wave
vectors a and b and the n X n port resistance matrix R. The trans-
) T

formation from the K-variables v = ( v; v, and

i=(4 i in )T to the W-variables a and b is done in
almost the same manner as for the linear case (I denotes the n x n

)

In the sequel we will assume linear independent port variables,
which means that the port resistance matrix R is of full rank. In
all other cases we could reduce the number of ports without loss of
information.

With these vector wave variables we can describe any nonlin-
ear n-port element in the same way as it was done in equation (2)
for the scalar case. The only difference is that we can parametrize
for n independent variables a,...,ay, and that all nonlinear func-
tions now map one n X 1 vector to another n x 1 vector. With

a=(a, a, ay )T we can adopt the wave variable de-
scription of the scalar nonlinear element in equation (3) to the vector

eI

where the vector functions f,(a) and f, (a) are defined by
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So, for an explicit solution of the nonlinear n-port element in the
wave domain, f, must be an one-to-one mapping with an unique
inverse mapping f, !, so that we can write b as

b=b(a)=f, (f;l(a)> . (12)
This nonlinear vector WDF can be connected to any linear WDF by
a reflection free port adaptor, as depicted in figure 1.

3. IMPLEMENTATION

So far, the definition of the nonlinear vector WDF in (12) is quite
abstract and difficult to handle. Therefore in this section we will
present a method to implement any nonlinearity which is given by
look-up-tables by the usage of a continuous piecewise linear ap-
proximation of the function. To illustrate the method, first the scalar
case is treated.

3.1 Scalar Case

Often nonlinearities are given in form of look-up tables, where a
set of subsequent measurement points are archived. To extract an
arbitrary point on the characteristic of the nonlinearity, one has to
interpolate these measurement points. First order interpolation may
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Figure 2: Nonlinear characteristic approximated by a continuous
piecewise linear function.

be sufficient. Figure 2 depicts such an interpolation, which obvi-
ously is an continuous piecewise linear function.

It is straightforward to find a parameterization of this curve and
write this nonlinear function in the form of equation (2). With N
denoting the number of measurement points we can approximate

any nonlinearity by
P}

B enem

with k = | a| as the integer part and m = o — k as the fractional part
of a and o € [1,N]. The transition to wave variables is very clear
and just a linear transformation of the points P, with k€ {I,N —1}

()

The nonlinear WDF can be described by
) eRY+m- (P, fP,fV)} . (15)
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there £ and m are defined as above. So to achieve an explicit solution
of f in the form of equation (6) we can simplify the condition given
in equation (7) to the postulation, that the wave quantities a; have
to be a strictly monotonic increasing or decreasing sequence,

(13)
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For an implementation of this scalar nonlinear WDF one only has
to find the appropriate & for the given incoming wave a by a suitable
search algorithm and then determine m by m = (a—a;) /(a; | —a,)
to achieve the reflected wave b.

Apyy <9

3.2 Vector Case

As in section 2.2, the extension to the vector case is straightforward.
We assume, that » nonlinearities are given as continuous piecewise
linear functions in the form of equation (13). We define 2n dimen-
sional points
T
)

(o
analog to section 2.2, there / denotes the number of the nonlinearity

and k& denotes the number of the point. All coordinates with index
unequal to / resp. 2/ are zero.
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With this definition of 2n-dimensional points, the parametriza-
tion of the vector nonlinearity can be done similar to equation (13),
whereas according to section 2.2 we have to find a n-dimensional
parametrization. Nevertheless, due to the mutual orthogonality of
the points PIEU regarding the index /, we can approximate any set

of independent nonlinearities by the multidimensional continuous
piecewise linear function

N—-1 N,—1 v v
1
f= U{( X >’( X >€<P]£])+...+P]£:))
k=1 k=l
+m, (PJEIIL —P£]1)> Yoy (szfll —P]§:>) } . (18)

where a; € [1 , N[] is the parameter of the scalar parametrization of
the /th nonlinearity by equation (13) and k; and m; is the integer part
resp. fractional part of a;.

The transition to W-variables is performed by the definition of
the vector wave variables in equation (8) analog to the scalar case
in equation (14). It results in a multidimensional nonlinear WDF
described by a set of points in the 2rn-dimensional space
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However, the proof that f is an unique mapping from the incom-
ing wave a to the reflected wave b (i.e. to proof the uniqueness of
equation (12)) cannot be conducted in general. One can proof lo-
cal invertibility with the well known inverse function theorem by
testing the Jacobian matrix for invertibility. In our case this would
lead to the condition, that all the incoming wave components of the
vectors in equation (19) must form an invertible matrix for all linear
sub-elements of the nonlinear function f, in more detail
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for all possible variations of the indices ; to k;.

Another strong indication of global invertibility which holds in
the majority of cases are the signs of the elements of the Jacobian
matrix. Besides local invertibility, proofed by equation (20), we
postulate that the signs of all elements of the Jacobian matrix are
constant over the whole definition range. This condition is similar to
the conditions (16) resp. (17) for the scalar case and can be checked
by verifying

Sign( al(cpﬂ 7a1({}> ali’:ll 7a§c’:) ) =const  (21)
forall k, € {1;...;N, — 1}, k, € {1;...;N,— 1}, ... . However,

condition (21) is an indicator not a real mathematical proof for
global invertibility. In some very special cases, one may find more
than one valid set of k... ,k;, that solve equation (19). An exem-
plification of a nonlinear vector WDF is given in section 4.2.

4. EXAMPLES

To illustrate the usage of piecewise linear functions first a scalar ex-
ample of the implementation given in section 3 is shown here. Then
an example with two realistic nonlinearities is given to demonstrate
the capabilities of the proposed approach.

79

Figure 3: Chua’s Circuit
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Figure 4: Behavior of Chua’s circuit

4.1 Scalar Case: Chua’s Circuit

The first example has already been studied by various authors (see
e.g. [4], [7]) for its chaotic behavior, a property unpleasant to ana-
lyze. The so called Chua’s circuit, as depicted in figure 3, contains
besides several linear one-port elements one nonlinear resistance
denoted by NL. The characteristic of this nonlinearity is already
schematically depicted in figure 2, it is a piecewise defined negative
linear resistance with two different slopes.

The network circulates around the points P, resp. P; in figure 2,
as it is amplified between the points P, and P; and damped between
the points P, and P, resp. P; and P,. Furthermore it changes the
centerpoint of this circulation in a chaotic fashion.

The network was simulated as follows. First the nonlinearity
was described according to equation (13), which for this case is
an exact description. Then the linear part was discretized by basic
WDF principles as written in [1], which also provide the port resis-
tance R of the linear part. With this port resistance, the nonlinear
function was transformed to the WD domain by equation (14). The
resulting nonlinear WDF was connected to the linear part as shown
in figure 1 by a parallel port adaptor with one reflection free port.

During simulation the scalar nonlinear WDF described by equa-
tion (15) is implemented in two steps. For every incident wave a one
first has to search for the correct index & which fulfills the inequality
a, < a<a;_ . This can be done by efficient search-algorithms due
to the subsequent definition of the a, (see equation (16) and (17)).
Then one can determine the fractional part of the parametrization
m according to section 3.1 and finally one can calculate the re-
flected wave b. Even for large numbers of linear sub-elements N
the computational effort is moderate as the actual calculation has to
be performed only once and the effort for the search algorithm only
increases with the logarithm of N.

A result of the simulation is shown in figure 4. Plotting the volt-
age of the second capacity C, against the voltage of the first capacity
C, clearly demonstrates the chaotic behavior of Chua’s circuit and
the two attractors of the system.

4.2 Vector Case: Two Diodes

The second examples demonstrates the usage of the introduced non-
linear vector WDFs to simulate systems with multiple nonlineari-
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Figure 5: Electrical damper with different attack and release time
constants, realized with two diodes. R, = 5R,.

Figure 6: Reflected wave b, of the first diode as a function of both
incident waves @, and a,.

ties. The circuit is depicted in figure 5 and includes two diodes.
Their characteristics are modeled according to W. Shockley by

i=ig (exp () —1) -

The approach to simulation differs only slightly from the scalar
case described in section 4.1. The main differences, which are also
of particular interest in this context, lie in the vector nonlinearity,
which will be described in the sequel.

To achieve a description according to equation (19), the charac-
teristics were non uniformly sampled and N, resp. N, 4-dimensional
points were created. Then all points were transformed by equa-
tion (8) using the port resistance matrix R from the linear part of
the network. With these points the vector nonlinearity was defined
by equation (19). Figure 6 depicts the reflected wave of the first
diode b, as a function of the incident waves a,; and a, sampled at

the N; x N, different points P]:V A1) +P]:V 2). The sampling is more
1 2

(22)

dense in interesting regions. The top view of b, (a,,a,) is given in
figure 7. In contrast to the definition of the points Plgl) in the v X i-

domain, here the points are neither in line with the axes a; and a,
nor do they form a straight line. However, one can see that they
fulfill condition (21) and that this condition is a strong one which
also admits the application of suitable search algorithms to find the
correct segment.

The simulation itself follows the procedure from section 4.1 for
the scalar case. The absolute number of function segments now is
(v, — 1) - (N, — 1), however the computational cost for the search
algorithm only increases with log N +logN,. The result was sim-
ulated with a rectangular input function u,, at a frequency of 100Hz
and an amplitude of 1V for Germanium diodes. Figure 8 shows
that the charge and discharge of the capacity follows different time
constants.
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Figure 7: Projection of b, (a,,a,) onto the a; x a, plane.
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Figure 8: Voltage of the capacity from figure 5.

5. CONCLUSIONS

In this paper we presented a new approach for the realization and
efficient implementation of nonlinear WDFs, which allows multiple
nonlinearities in the reference system. With some mild restrictions
we are able to simulate almost any mixed linear-nonlinear network
without iterative methods. An important application is the area of
physical modeling, where WDFs are an object of current research.
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