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ABSTRACT

In this paper, we extend the set of RD optimization algorithms for
the MDCT with the flexible time segmentation algorithm [1] and
compare it with the existing single tree time segmentation algo-
rithm [2]. We describe the application of transition windows in a
time-varying MDCT and in RD optimal time segmentation algo-
rithms. Experimental results show that the flexible time segmenta-
tion for a time-varying MDCT can outperform the Single Tree time
segmentation algorithm in several cases.

1. INTRODUCTION

The emergence of time-varying heterogeneous networks dictates
new audio coding schemes, in which various aspects of an audio
codec adapt to the time-varying characteristics of the input signal,
to time-varying network and application constraints and to user-
preferred codec attributes. One of these aspects that is fundamental
to any audio codec is the time-frequency analysis, for which typi-
cally a filterbank or linear signal transformation is applied.

A tool that is often employed to evaluate the adaptive nature
of an audio codec, is the time-frequency tiling diagram. It pro-
vides an indication of the coverage of the time-frequency plane by
the individual basis functions of the transform. It has been recog-
nized by various researchers [3, 4] that the ideal audio codec can
make adaptive decisions regarding the optimal time segmentation
and frequency decomposition. Therefore, a signal transform that
has time-varying resolutions both in time and frequency domains
is required, such that it can be applied to construct arbitrary time-
frequency tilings.

For audio coding, the optimality of the time-frequency analy-
sis is often defined in a rate-distortion (RD) sense. From a library
of signal expansions the basis is chosen that minimizes the coding
distortion such that a rate constraint is met. The field of opera-
tional rate-distortion optimization offers many techniques to solve
this problem in a practical coding environment.

The wavelet packet transform, a tree-structured filterbank, pro-
vides a large library of time-frequency tilings, and several algo-
rithms already exist to perform an RD optimization of the trans-
form [5]. See Figure 1 for examples of time-frequency tilings that
can be obtained using time segmentation algorithms. However, in
audio coding the MDCT is often preferred, since it has desirable
properties, such as good channel separation, strong stopband atten-
uation, minimum blocking artifacts, efficient resolution switching
and the availability of fast algorithms. Although some algorithms
have been presented that allow for optimization of the MDCT, a
time segmentation algorithm similar to the one for wavelet packets
in [1, 5] has not yet been shown.

In this paper, we extend the set of RD optimization algorithms
for the MDCT with the flexible time segmentation algorithm. We
start in Section 2 with a review of rate-distortion optimization and
describe two existing time segmentation algorithms. Next, in Sec-
tion 3, we investigate the time-varying MDCT and the application of
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Figure 1: Time-frequency tilings as obtained by time segmentation
algorithms. a) Uniform time segmentation, b) single tree time seg-
mentation and c) flexible time segmentation.

transition windows. In Section 4 we present a flexible time segmen-
tation algorithm for the time-varying MDCT and compare it with
the single tree algorithm. We draw some conclusions in Section 5.

2. RATE-DISTORTION OPTIMAL TIME
SEGMENTATION

We consider RD optimal time segmentation algorithms. These algo-
rithms can be applied to find a time segmentation of an audio signal
that minimizes the coding distortion D subject to a target coding en-
tropy Htarget . Moreover, these algorithms concurrently find for each
time segment the optimal coding method.

To treat the subject more formally, we introduce some nota-
tion. Assume that we are given a signal x that is divided in N non-
overlapping frames of size F . We want to find a time segmentation τ
from the set T = {T1, . . . ,T2N−1} of all possible time segmentations.
Such a time segmentation is a sequence of p adjacent time seg-
ments, i.e. τ = {s1, . . . ,sp}, where a segment consists of merged ad-
jacent frames. The minimal segment length is therefore equal to the
framesize F . Furthermore, let γ = {c1(sk), . . . ,cq(sk)} be the set of
coding templates from which we can select a coding template c(sk)
to code an individual segment sk, and let C = {C1(τ), . . . ,Cr(τ)}
denote the set of all possible ways of coding the time segmentation
τ . The problem that we want to solve can then be expressed as

min
T

min
C

D(τ,C(τ))

subject to H(τ,C(τ))≤ Htarget .

By introducing a Lagrange multiplier λ ≥ 0 to combine rate and
distortion, we obtain the RD cost function J(λ ) = D + λH and we
can solve the unconstrained minimization problem in Eq. 1 instead

min
T

min
C

p

∑
k=1

Jk(λ ,sk,c(sk)), (1)

where it is assumed that rate and distortion are additive over the seg-
ments. Since the solution to Eq. 1 is found for a particular value of
λ , the corresponding optimal entropy H∗ does not necessarily sat-
isfy the entropy constraint, and an iterative search for the value of
λ that corresponds to Htarget is required. If we can assume that the
different segments are mutually independent, the search for the op-
timal coding template, given a particular time segmentation, can be
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done on a segment-by-segment basis and the problem is described
by Eq. 2

max
λ≥0

(

min
T

( p

∑
k=1

min
γ

[

Dsk ,c(sk) +λHsk,c(sk)

]

)

−λHtarget

)

. (2)

From Eq. 2 we can distinguish the following three stages in the
optimization procedure:
• Initialization For all possible time segmentations in the pre-

defined library, transform coefficients are generated and coded
with all possible coding templates to obtain rate-distortion pairs
for all segments.

• Phase I For a given value of λ , all segments are populated with
their minimum Lagrangian cost, i.e. the cost that is found by
minimizing over all coding templates. The optimal time seg-
mentation and the corresponding coding templates are found by
an efficient search through the library of possible segmentations.

• Phase II If the optimal rate found at Phase I does not correspond
to the target rate Htarget , λ is adjusted, using e.g. the bisection
algorithm, and Phase I is run again.

The libraries from which time segmentations are chosen in the ini-
tialization and Phase I can be provided in several ways. We review 2
methods that each provide a different library of time segmentations
and describe in which manner they perform a fast search through
these libraries.

2.1 Single Tree time segmentation

The single tree (ST) algorithm was first presented for frequency de-
compositions with wavelet packets in [6] and was applied for time
segmentation with a time-varying MDCT in [2]. It can be employed
to search through a library of dyadic time segmentations, i.e. seg-
mentations that result from binary tree structures. Each segment
can be seen as a node in a binary tree. Starting from the uniform
segmentation into N frames, this tree is pruned upwards, where at
each node the rule in Eq. 3 is evaluated to derive whether frames
should be merged.

Prune if J(parentnode)≤ [J(child1)+ J(child2)]. (3)

At the end of this procedure, an optimally pruned subtree is ob-
tained that corresponds to a certain time segmentation, along with
the optimal coding templates for each segment. A limitation of the
ST algorithm is the restriction to dyadic segmentations. This can
result in segmentations that are inefficient for the given statistics of
the signal. Moreover, the algorithm is also sensitive to time-shifts
of the signal [5].

2.2 Flexible time segmentation

The flexible time segmentation (FTS) algorithm as presented in [1]
searches through a much larger library of possible segmentations.
For each possible combination of multiple adjacent frames, rate-
distortion pairs are generated. Since we assume the total Lagrangian
cost to be an additive sum of independent terms, dynamic program-
ming is applied to find the optimal time segmentation recursively,
which reduces computational complexity by using the known opti-
mal time segmentations for all previous subsignals. This procedure
can be described as follows.

Let Jk,l denote the Lagrangian cost for encoding the time inter-
val sk,l = [kF, lF−1], i.e. the segment that consists of frames k to l.
Then, at each iteration i, the best time segmentation of the interval
[0, iF−1] is found by iteratively solving

J∗i = min
0≤k≤i

(J∗k + Jk,i), i = 1, . . . ,N, (4)

where J∗i is the minimum cost for coding the interval [0, iF−1]. The
minimizing argument of Eq. 4 is recorded as a split position and,
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Figure 2: The flexible time segmentation algorithm uses dynamic
programming to iteratively build up the optimal segmentation.

after having found J∗N , the optimal time segmentation can easily be
determined by backtracking all the optimal split positions. Figure 2
gives an example of how dynamic programming is applied to avoid
an exhaustive search.

The larger library of time segmentations that is searched by the
FTS algorithm, can reduce the sensitivity to time-shifts of the signal
and can provide more efficient signal modelling. However, these
advantages are obtained at an increased computational complexity,
compared to the single tree [5].

3. TIME-VARYING MDCT

The modified discrete cosine transform (MDCT) [7] is an over-
lapped block transform, i.e. a transform where samples from con-
secutive overlapping blocks are windowed and transformed. In the
case of the MDCT, the support of the analysis window is two blocks.
From a segment of length 2M, a set of M transform coefficients X(k)
is computed by the direct MDCT, which is defined as

X(k) =
2M−1

∑
n=0

x(n)pn,k, k = 0,1, . . . ,M−1, (5)

where

pn,k = h(n)

√

2
M

cos
[ (2n+M +1)(2k +1)π

4M

]

,

are the M basis functions and h is the prototype window. The win-
dow design is a trade-off between satisfying the perfect reconstruc-
tion (PR) requirements and achieving a good coding performance
when the transform coefficients are quantized. An often used win-
dow is the sine window, defined as

h(n) = sin
[

(n+
1
2
)(

π
2M

)
]

, n = 0,1, . . . ,2M−1. (6)

The MDCT can be applied as a time-varying transform with the
window-switching algorithm [8], that allows to change the length
of the window or, equivalently, the number of transform coeffi-
cients with time. The steering mechanism for obtaining the time
segmentation is typically based on an energy or perceptual entropy
measure. In order to retain the PR property of the MDCT, special
transition windows are required at transition boundaries. In contrast
to wavelet packets, the design of such windows is relatively easy in
the case of the MDCT [8, 9].

Assume that we would like to switch from a size-M2 MDCT to
a size-M1 MDCT, where M1 < M2. Let w1,w2 be the windows of
length 2M1 and 2M2 obtained by Eq. 6. We will distinguish three
different transition window designs.
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Figure 3: a) Impulse and b) magnitude responses for the sine win-
dow w2, boundary window w2B, constant tail window w2CT S and
variable tail window w2V T S, where M1 = 8 and M2 = 16. The stop-
band reduction of the first sidelobe is shown.

1. Boundary windows
At a transition boundary, both windows w1 and w2 are adapted
such that there is no overlap across the transition. E.g. for w2, a
boundary window w2B is designed independent of w1.

w2B(n) =

{

w2(n) , n = 0, . . . ,M2−1
1 , n = M2, . . . ,3M2/2−1
0 , otherwise

2. Overlapping windows with constant shape transition tails
To retain some overlap at transition boundaries, w2 can be re-
placed at all segments by the constant tail shape (CTS) window
w2CT S with window tails derived from w1. Both windows w1
and w2CT S now have tails with a constant shape, but the win-
dow w2CT S can have a severely reduced overlap at all segments
of length M2.

w2CT S(n) =











w1(n−α) , n = α, . . . ,α +M1−1
w1(n−3α) , n = α+M2, . . . ,α+β−1
1 , n = α+M1, . . . ,α+M2−1
0 , otherwise

3. Overlapping windows with variable shape transition tails
To retain an overlap that is as large as possible, an asymmetric
variable tail shape (VTS) window w2V T S can be designed such
that only 1 tail is derived from w1. This window will then be
used at transition positions.

w2V T S(n) =











w2(n) , n = 0, . . . ,M2−1
w1(n−3α) , n = α+M2, . . . ,α+β−1
1 , n = M2, . . . ,α+M2−1
0 , otherwise

where α = (M2−M1)/2 and β = M2 +M1.

Figure 3 compares the impulse and magnitude responses of the tran-
sition windows with those of a sine window. It can be seen that all
transition windows suffer from reduced stopband reduction. From
a coding point of view, the VTS window is a good compromise be-
tween retaining PR and loss of channel separation.

However, when combined with any of the time segmentation
algorithms from Section 2, a dependency is introduced into the op-
timization process. Dynamic programming or tree pruning can no
longer be used, since the segments are not mutually independent,
i.e. a decision to split or merge adjacent frames at any point affects
the previously found optimal segmentation. The same holds for the
application of boundary windows. To find an optimal time segmen-
tation, an exhaustive search through the entire library would have to
be performed, which is infeasible for most practical applications. In
this respect, the CTS window is a more suitable choice, since it re-
places the standard window w2 with w2CT S at all times, not only at

a)

b)

c)

Figure 4: Window-switching schemes for a) boundary window, b)
constant tail shape window and c) variable tail shape window.

transitions. Therefore, the choice of a window at any segment is in-
dependent of the previous segments and any of the aforementioned
time segmentation algorithms can be applied. Figure 4 shows some
schematic examples of time segmentation with the various transi-
tion windows and illuminates the problem of dependency in time
segmentation.

4. FLEXIBLE TIME SEGMENTATION FOR MDCT

Both the ST and the FTS algorithms were implemented and com-
bined with a time-varying MDCT. A frame size of 128 was used
and at most 8 frames could be combined. It follows directly that
the ST algorithm can choose between windows having lengths
256,512,1024 or 2048, whereas the FTS algorithm can select any
window length that is a multiple of 256, up to 2048. The segments
were transformed by applying Eq. 5 and the transform coefficients
were quantized by a uniform quantizer. The set of coding tem-
plates consisted of 6 quantizer stepsizes. The resulting l2 distortions
were summed over all coefficients in a segment. For all window
lengths and coding templates, Huffman codebooks were computed
to substitute the quantized coefficients with entropy codewords. The
codeword lengths were taken as the coding entropy. Moreover, ef-
ficient coding of zero-valued transform coefficients was employed
where for a set of M coefficients a long run of zeros in the high
frequency range was replaced by a codeword of log2(M) bits. Cod-
ing of side information was restricted to the coding templates. The
information rate for sending the time segmentations, approximately
400 bits per second, was neglected.

The CTS and VTS windows were applied in the windowing
operation of the MDCT transform. In the experiments where the
CTS window was used the optimization could be carried out as de-
scribed in Section 2. However, for the case where the VTS window
was employed, a modified procedure was developed as follows. In
the initialization the transform coefficients are generated using the
standard sine window from Eq. 6, i.e. no transition windows are
used. The optimization in Phase I is performed, thereby neglecting
the dependencies inherent to the use of the VTS windows. Once the
optimal time segmentation and corresponding coding templates are
found, a recoding operation is performed, where, given the obtained
time segmentation and coding templates, VTS transition windows
are applied at the appropriate positions. Obviously, the coding re-
sults as obtained by this procedure are suboptimal, but in our experi-
ments, we investigated the difference between the estimated results,
i.e. the results that were obtained when no transition windows were
applied, and the results after recoding.

4.1 Encoding a single fragment

Figure 5 shows a small part of a castanet signal with 3 isolated tran-
sients. The fragment was coded at an average coding entropy of 1
bit per sample (bps) and CTS windows were applied. The upper
plots show the average rate in bps for each segment, for both the ST
and FTS algorithms. The lower plots show the obtained time seg-
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Figure 5: a) Single Tree and b) flexible time segmentation applied
to a castanet signal. The upper plots show the average bitrate per
segment, the lower plots the optimal time segmentation and recon-
structed signal.

mentations and reconstructed signals. From these plots it becomes
clear that the ST algorithm can be inefficient due to the restricted
library of time segmentations. Once a choice for a certain segment
size at a certain position in time is made, the segment sizes around
this position are restricted as a result. The FTS algorithm can adapt
better to local events in time. Therefore, it can be seen from the bit
allocation plots that a larger average number of bits can be spent at
small segments when the FTS algorithm is applied. Moreover, A
higher SNR is obtained at a slightly smaller average rate.

4.2 Encoding multiple fragments

A more elaborate experiment was performed on a total of 9 audio
fragments representing various musical genres. The fragments (16
bits, 48 kHz) were coded at coding entropies ranging from 0.5 to
2.5 bps, for both CTS and VTS window types. Composite rate-
distortion curves were constructed to compare the ST and FTS al-
gorithms. Additionally, the fragments were coded using a uniform
time segmentation with segments of size 1024, to emphasize the
need for adaptive time segmentation in general.

Figure 6a shows the RD curves for the CTS window. It can be
seen that the FTS algorithm outperforms the ST algorithm. This
can be expected, since the ST algorithm searches through a library
that is a subset of the FTS library. However, Figure 6b shows that
when VTS transition windows are applied, both algorithms perform
nearly similar and it can be questioned whether the application of
the FTS algorithm is worth the increased complexity. A possible ex-
planation for this result is that, in the case of CTS windows, smaller
segments are preferred, and the ST algorithm becomes less efficient.
This effect is not present when using FTS windows.

An interesting results can be seen from Figure 6c, where for the
case of VTS windows and the FTS algorithm, the estimated results
as obtained by the optimization procedure are compared with the
results after recoding. It can be seen that the dependency that is
introduced in the optimization can be almost neglected. For the ST
algorithm, a similar results was obtained, which is in line with the
results found in [2].

5. CONCLUDING REMARKS

The combination of flexible time segmentation and a time-varying
MDCT has been presented and compared with the existing single
tree algorithm. A detailed description of MDCT transition windows
and their application in rate-distortion optimal time segmentation
algorithms has been given. The results show that flexible time seg-
mentation for time-varying MDCT can outperform the single tree
algorithm in several cases. Future work will concentrate on the re-
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Figure 6: Comparison of Single Tree and flexible time segmenta-
tion. a) Results for CTS window. b) Results for VTS window. c)
Difference between estimated and real results for VTS window and
the FTS algorithm.

placement of the l2 distortion measure with a perceptual distortion
measure. For this, a psycho-acoustic model that incorporates time-
domain masking is required.

REFERENCES

[1] C. Herley, Z. Xiong and K. Ramchandran and M.T. Orchard,
“Flexible Time Segmentations for Time-varying Wavelet
Packets,” in Proc. IEEE Conf. of Time-Frequency and Time-
Scale Analysis, Philadelphia, USA, Oct. 1994, pp. 9–12.
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