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ABSTRACT
Usually, in radar imaging, we suppose that the reflectors re-
spond the same way regardless of the angle from which they
are viewed and have the same properties within the emitted
frequency bandwidth. Nevertheless, new capacities in SAR
imaging (large bandwidth, large angular excursions of anal-
ysis) makes this assumption obsolete. The original applica-
tion of the multidimensional continuous wavelet transform
method in SAR imaging allows to highlight the frequency
and angular behavior of these reflectors. This paper discusses
the utility of the wavelet transform in SAR imaging for ex-
tracting from real targets some essential features allowing to
distinguish objects that belong to different classes.
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1. GENERAL DESCRIPTION OF THE PROBLEM

The radar imaging process [8] consists in analyzing the re-
flected signal H(~k) collected by a moving radar (figure 1)
and to form the spatial repartition I(~r) of the bright scatterers
which reflect a part of the emitted radar signal [9, 10, 11].
The wave vector~k is related to the emitted frequency f and
to the direction θ of radar illumination by relations :
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where c is the speed of light, and the extra-factor 2 accounts
for the round trip delay (in time) of the signal.

If the object is illuminated using a broad-band signal
and/or for and a large angular extent, it is realistic to consider
that the amplitude of the reflectors show a dependence on
frequency and on aspect angle. Such amplitude variation of
scatterers has to be highlighted in order to see if this variation
is potentially interpretable in terms of target characteristics.

Considering this amplitude variation, the spatial reparti-
tion of reflectors I(~r) must depend on the wave vector~k and
must now be noted I(~r,~k).

The quantity I(~r,~k) is, in fact, the energy distribution
of the reflected signal H(~k) in the hyperplan (~r,~k) and will
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Figure 1: A reflector, viewed at two different illumination an-
gles in SAR-stripmap mode

be seen, next, as ”extended images” relative to the spatial
repartition I(~r).

The next section is devoted to the construction of these
distributions I(~r,~k) using the time-frequency analysis and
the physical group theory.

First, general distributions are constructed based on a her-
mitian and bilinear form of the reflected signal H(~k). Then,
to overcome some drawbacks generated by this construction,
we focus on the construction of regularized distributions that
will introduce the wavelet transform.

2. EXTENDED RADAR IMAGING

Time-frequency analysis and the physical group theory allow
to construct extended radar images [1, 2, 3, 4]. The dimen-
sion of these images, called hyperimages, is the product of
the dimension of the vector~r by the dimension of the vector
~k.

The principle of the extended radar imaging [1] is based
on a physical group of transformations, the similarity group
S . This is acting on physical variables~r and~k by rotations
Rθ , dilations a in length (or time) and translations δ~r ac-
cording to :
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~r → ~r′ = aRθ~r +δ~r
↓ ↓

~k → ~k′ = a−1
Rθ~k. (1)

The transformation law of the reflected signal H(~k) and
its extended image I(~r,~k) in a change of such a reference
system is therefore given by :

H(~k) → H ′(~k) = a e−2iπ~k.δ~r H
(

aR
−1
θ

~k
)

↓ ↓

I(~r,~k) → I
′
(~r,~k) = I

(

a−1
R

−1
θ (~r−δ~r),aR

−1
θ

~k
)

. (2)

2.1 A general formulation of the extended images

To construct the energy distribution I(~r,~k) , a first approach
consists in representing it as a hermitian and bilinear form of
the signal H(~k) reflected by the target :

I(~r,~k) =
∫ ∫

K(~k1,~k2;~r,~k)H(~k1)H∗(~k2)d~k1 d~k2, (3)

where the kernel K(~k1,~k2;~r,~k) is supposed to be hermitian.
This kernel is not known but can be determined with some
physical constraints made on the distribution I(~r,~k) :

• The distribution can satisfy the property of covariance
by the similarity group S given by (2),

• The distribution I(~r,~k) can be seen, in R
2, as a spatial

density (for a given~k). Then , the distribution, has to be
positive. Its integral on some surface D can, therefore,
be interpreted as the RCS (Radar Cross Section) contri-
bution σD (~k) of all the reflectors contained in D :

σD (~k) =
∫

D

I(~r,~k)d~r. (4)

• If D represents the whole plan, the distribution can re-
spect the well known marginal property :

∫
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∣
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2
. (5)

• The energy conservation between the distribution space
and the reflected signal space leads to an important rela-
tion (Moyal formula) which connects the inner product
between two given reflected signals H1 and H2 and their
associated distributions I1 and I2 :
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=
∫ ∫

I1(~r,~k) I∗2 (~r,~k)d~rd~k. (6)

The time-frequency analysis has shown that no distri-
bution can satisfy all these properties. For example, the
property (6) does not always allow to obtain a distribution

everywhere positive, which is inconsistent with the RCS
nature of the distribution given by (4) or (5).

To overcome this drawback, it is possible to construct a
regularized form of these distributions obtained by smooth-
ing the general distribution given by (3). These regularized
distributions verify the constraints (2), (4) and (6) but not
the marginalisation property (5). The construction of these
extended images which introduces the wavelet transform, is
developed in the next section.

2.2 Construction of the extended images by Wavelet
transform
Let φ(k,θ) be a mother wavelet supposed to represent the
signal reflected by a reference target. The associated dis-
tribution Iφ (~r,~k) is supposed to be well located around the
spatial origin~r =~0 and (k,θ) = (1,0). For example, one can
use a two-dimensional separate gaussian function :

φ(k,θ) = e−( k−1
σk

)2
· e−( θ

σθ
)2

where the two free parameters σk and σθ control the
spread in frequency and in angular domain and play on in-
terrelated resolutions in spatial domain~r = (x,y), frequency
and angle.

By the action of the group S , a family of wavelet bases
Ψ

~r0,~k0
(~k) can be generated from the mother wavelet φ(k,θ)

according to :

Ψ
~r0,~k0
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1
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=
1
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k
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)

. (7)

A regularized distribution Ĩ(~r0,~k0) can be constructed by
smoothing the general distribution I(~r,~k) given by (3).
And using Moyal formula (6), covariance property (2) with
H1(~k) = H(~k), H2(~k) = Ψ

~r0,~k0
(~k), I1 = IH and I2 = Iφ , we

obtain :
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(8)

The right hand side is nothing but the wavelet coefficient
C(~r0,~k0) which is introduced as the invariant scalar product
of the group S between the reflected signal H and each ele-
ment Ψ

~r0,~k0
of the wavelet basis :

C(~r0,~k0) =
∫

H(~k)Ψ∗
~r0,~k0

(~k)d~k

=
∫ 2π

0
dθ

∫ +∞

0
k H(k,θ)Ψ∗

~r0,~k0
(~k)dk. (9)
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The reconstruction property allows to recover the signal
with the knowledge of its wavelet coefficients :

H(~k) =
1

κ(φ)

∫

d~r0

∫

C(~r0,~k0)Ψ
~r0,~k0

(~k)d~k0, (10)

where κ(φ) is the admissibility coefficient defined as :

κ(φ) =
∫

|φ(~k)|2

k2 d~k < ∞. (11)

• Interpretation of the distribution I(~r,~k):

Let us Rewritten I(~r,~k) ≡ I(x,y; f ,θ) : for each
frequency fo and each angle of radar illumination θo,
I(x,y; fo,θo) represents a spatial repartition of reflectors
which respond at this frequency and this angle.

Inversely, for each reflector located at ~ro = (xo,yo), we
can extract its feature I(xo,yo; f ,θ) in frequency f and in
angular θ . This is this aspect that we decided to point out in
order to see if this quantity can be interpretable in terms of
target characteristics.

To analyze this 4D structure, a visual display interface
called i4D [7] has been developed and allows to carry out an
interactive and dynamic analysis.

3. EXPERIMENTAL RESULTS

We present, here, some results of SAR imaging using
wavelets. We focus on the fact that each reflector in the
image can be characterized by his own energy distribution in
the space ( f ,θ).

We’ve chosen to show this energy distribution for
reflectors belonging to a long metallic pipe and to a building
(figure 2). Concerning the building, we focused on reflectors
belonging to the front ridge (relative to the radar’s position)
and to the roof.
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Figure 2: Pipe and Buiding type target built by classical
radar imaging

In the following figures 3, 4, 5, the image, on the left,
represents the spatial repartition of the scatterers at the emit-
ted frequency fo = 14.2 GHz and the illumination angle
θo = 0.89 ◦. In this image, we select a pixel (with the curser)
and the energy repartition in the ( f ,θ) space corresponding
to this pixel is pointed out in the right picture.
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Figure 3: Energy Distribution I(xo,yo; f ,θ) of 2 given reflec-
tor respectively located at (xo = −17.25 m,yo = −11.94 m)
and (xo = −17.34 m,yo = −0.10 m) on the long metallic
pipe: the energy spreads in a very restricted angular domain
and not the same way on the frequency band. It was observed
for most reflectors belonging to the pipe.

4. CONCLUSIONS

The multidimensional wavelet transform analysis for the
SAR imaging can highlight some characteristics of the
reflectors that the classical SAR imaging can not do.
Moreover, we’ve seen in the previous examples (figures 3, 4
and 5) that, the reflectors belonging to the same ”structure”
(either the pipe, or the ridge of the building, or the roof
of the building) have a similar response in frequency and
angle. Inversely, the response differs significatively from
one structure to the other. The geometry [13],[14] and the
material composition of these structures can influence these
distinctions.

This is why, the goal, now, is to see if theses characteris-
tics can be interpretable in terms of target feature extraction.
An extension of the studies to other real targets at different
frequency bands and various angular extension is in project.
Indeed, even if the computation of wavelet transform in SAR
imaging needs high memory, it is inexpensive in time even
for real data.

A first step that can be proposed is to have, in the same image,
two pieces of information : the localization of the reflectors,
and the energy characteristics. This last information can be
represented in the image, for example with a color system
coding : each color will represent a coefficient obtained by
maximization of the correlation between the energy distribu-
tion and a set of given basis functions. This step has to be
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Figure 4: Energy Distribution I(xo,yo; f ,θ) of 2 given reflec-
tor respectively located at (xo = −2.22 m,yo = −12.38 m)
and (xo = −2.91 m,yo = 1.21 m) on the front ridge of the
building: the energy spreads in a very restricted angular do-
main and seems not depend on the emitted frequency. It was
observed for most of the scatterers belonging to this ridge.

integrated on an automatic process. The purpose is to iden-
tify the constituents of a target for a better interpretation of
it.
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