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ABSTRACT

This paper deals with blind separation of convolutive mixtures of
continuous phase modulated (CPM) sources. The main difficulty
lies in the fact that CPM sources are non linear (and hence non i.i.d.)
sources. We consider a particular contrast function, which is proved
to be closely related to the constant modulus (CM) criterion. The
connection between the two criteria allows us to prove the validity
of the contrast. Using recent results about CPM equalization, we
are able to characterize the scalar filtering ambiguity. Simulations
follow and show the efficiency of the method.

1. INTRODUCTION

Continuous Phase Modulation (CPM) is a widespread scheme
thanks to its attractive spectral efficiency and its constant modulus
property. In particular, it is used in the European second generation
mobile system (GSM), in the professional mobile communications
system Tetrapol, as well as in a number of military systems.

Blind demodulation of CPM signals corrupted by multipath is
an issue of practical interest in the field of passive listening. In
case of a single transmitter, most of the blind demodulation pro-
cedures proposed in the literature consist in jointly estimating the
parameters of the channel and the data sequence [5, 2, 7]. However,
it comes from [1] that blind demodulation of CPM signals can be
simply achieved by i) passing the received signal through an equal-
izer, ii) applying a classical detection algorithm on the output of
the equalizer in order to estimate the data sequence. Here, the co-
efficients of the equalizer are set thanks to the Constant Modulus
Algorithm (CMA) proposed by Godard [4]. Nevertheless, if sev-
eral transmitters are using the same frequency band, classical blind
demodulation procedures fail. In this case, it is necessary to sepa-
rate the sources before using one of the above blind demodulation
procedures.

The case where each source is a linear modulation of an i.i.d.
data sequence has been thoroughly investigated in the literature
[3, 10]. In this case, classical source separation methods do not
only achieve the separation of the different contributions to the re-
ceived signal, but also allow to cancel self-interference under cer-
tain well-known conditions. In this simple case, data sequences can
be recovered without further blind equalization algorithm.

Unlike the above context, we consider in this paper that each
source is a CPM signal. Since a Continuous Phase Modulation is a
non linear modulation with memory, it cannot be written as a linear
modulation of an i.i.d. sequence. Hence, the previous result does
not hold: although separation of the sources may still be possible
[9], nothing is known about the SISO filtering indeterminacy of the
recovered sources. Thus, the blind source separation framework
does not ensure self-interference cancellation. In other words, each
output of the blind source separation algorithm can be written as
the output of an unknown residual scalar filter excited by one of the
transmitted CPM signals. At first glance, blind source separation
should therefore be followed by a traditional SISO blind equaliza-
tion step in order to compensate for the latter residual filter and to
be able to finally recover each transmitted data sequence.
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In this paper, we propose a blind source separation criterion
which spares the use of SISO equalizers. Indeed, we show that the
scalar filtering ambiguity can be easily characterized thanks to the
results in [1]. The standard SISO blind equalization can hence be
replaced by a simpler and more efficient procedure.

We state the problem in the next section. We introduce our
separation criterion in Section 3 and discuss the equalization issue
in Section 4. In Section 5, we extend our method so as to be able to
recover all the sources. Finally, simulation results are presented in
Section 6.

2. PROBLEM STATEMENT

2.1 CPM sources and convolutive mixture model
We consider the transmission of N communication signals in the
same frequency band; the associated symbol sequences (a},),,.,/ €

{1,...,N} are modeled as i.i.d. binary zero-mean sequences taking
their values in {—1,1}. Assuming that the users share the same
baud-rate (denoted by 1/7;), the complex envelope of the emitted
(continuous-time) CPM signal associated with the j-th user is:

i(t)éexp [zl‘[hj<Za£(pj(t—k7}))] (1)

Hereabove, /; €]0,1[,h; # % is a modulation index and @(¢) is
a continuously increasing function such that, for all # < 0, (pj(t) =
0 and @;(¢) =1 for all ¢ > T;. In other words, we deal with full

response CPM signals.
A key-result due to Laurent [6] states that 5,() can be written

as a certain linearly modulated signal, namely:
i(f)zgsj(n)cj(f—nﬂ)v 2

In this equation, ¢ j(t) has a temporal support in [0,27;] (its expres-
sion, depending on /; and @;, can be found in [6]), and (s;(n)),,cz,
is a complex-valued sequence related to the symbols (a]j?) by the

recursion:
VneZ s;(n+l)= exp(znhja{;)sj(n),

where s,(0) is a random variable, uniformly distributed on the unit
circle, independent of (a}),,.,,. Hence the emitted signal s (1) has

the structure of a linear modulation of (s;(#)),c7 but, contrary

to the usual linear modulation framework, the “sequence of sym-
bols” (s;(n)),cz, is not i.i.d. but only stationary. More precisely,

(s_ /.(n)) 1cz, 18 strictly stationary and it is not a /inear process. We
need to introduce the covariance series y; (k) 2E{s i(n)si(n—k)} =
. .
cos(lThj)| | of (s;(n)),cz-
The N signals are transmitted through a linear time-invariant
channel corresponding, for example, to a propagation channel with
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multipath effects. Hence the model for the observation signal, after
sampling at rate 1/7; is a multiple-input/multiple-output (MIMO)
one:

Mz]s(n) ©)

x(n) = z M(n —k)s(k) £

keZ

where s(n) £ (s, (n),...,sy(n))7 is the source vector and M[z] is
an unknown transfer function. In the sequel, Q is the dimension of
x(n),which represents the number of sensors at the reception. The
following technical assumption holds in the paper:
A.1 Mz is stable (i.e. its impulse response is summable).
The model (3) is called a convolutive mixture of sources, which
are here stationary, but non-linear.

2.2 Blind source separation

Following the general ideas of ICA, the Q-dimensional observation
sequence (x(n)), . is passed through an N x Q stable separating
filter W |z]:

y(n) = Wx(n) 2 3 W(n—k 4)

keZ

It follows from (3) - (4) that:
y(n) = Gls(n) & S Gn—ks(k) (5)

keZ

where G[z] £ W[z]M[z] is called the global filter. Blind source
separation (BSS) aims at finding a separating filter, that is a filter
W [z] such that the associated G|z] is a diagonal filter up to a permu-
tation (in this case, we will say that the global MIMO separation is
achieved). This goal can be achieved blindly only under certain cir-
cumstances, for instance when there is some kind of independence
between the sources. Also, as far as the “channel” is concerned, an
invertibility property is required. In this paper, the following key-
assumptions hold:

A.2 The sources (s,(1)),cz,--

pendent up to the fourth order.

A.3 There exists a stable W[z such that G0[z] £ W0
is a diagonal filter up to a permutation.

Separating methods which search directly for a global MIMO
separating filter are not easily applicable. We therefore concentrate
ourselves on an iterative method, which is based on the the ability
to first extract one source. We therefore consider one row wz] of
the previously defined separating filter and we denote by g[z] £
wz]M][z] the global 1 x N MISO filter. We also need to introduce

(sy(n)),cz are mutually inde-

[ZIM]

a norm for the global filter g[z] £ (g [2],...,gy[z]). For any index
j=1,...,N, we set:
I 32 S g g0y, k—1),

(kiyez

and the corresponding (weighted) £2-norm of g|z] reads:

N

el 2 (S llg,l2)t.

=

Finally, the relation between the global filter and the global out-
put reads y(n) £ g[z]s(n). One can thus see that there is an equiv-
alence between the constraints ||g|| = 1 and E{|y(n)|?} = 1. In the
following the different quantities will be considered either as de-
pending on g or on y(n).

In Section 3, we consider deflation-like approaches for BSS,
which rely on the ability to extract one source among a mixture of
several ones. Section 4 describes the equalization procedure after
one source has been separated. The iterative procedure in order to
extract all the sources is presented in Section 5. Finally, simulations
are presented in Section 6.

3. THE MISO EXTRACTION OF ONE SOURCE
3.1 The separation criterion

Contrast functions are a convenient tool for tackling the problem of
BSS, which then becomes an optimization problem. By definition,
a contrast function (or contrast) is a function which is maximum
if and only if separation is achieved, that is if and only if y(n) is a
scalar filtered version of one source. We here consider the following

contrast:
J(v(n)) £ ~Cum®*[y(n))], ©)

where Cum*[.] denotes the fourth-order auto-cumulant with no de-
lay. Only if the sources were i.i.d. and had negative kurtosis, it is
obvious that J would be a contrast. Indeed, only in this particular
case, we would be able to guarantee that Cum*[y(n)] < 0, and we
could write J(y(n)) = |Cum®*[y(n)]|, which is a well-known con-

trast. Unfortunately, these arguments do not hold for CPM sources,
which are non i.i.d.
3.2 Link with the constant modulus criterion

Since CPM signals have unit modulus, a natural criterion in order
to separate them would be the constant modulus (CM) criterion:

T () ZE{(y(m)* - 1)%} )

It is known that a link exists between the two criteria [8], which is
recalled in the following lemma:

Lemma 1 IfE{|y(n)|*} = 1, then:
Jy(n) = 1=Jcp ((n). ®)

In addition, for all j € {1,...,N}, we have:

sup (V(hfzls; () ) =1 ©)

Hth:I

where hz) is a SISO filter. The supremum is reached when hlz| is
the identity filter.

Proof: We can write indeed:

Cum®[y(n)] = E{[v(n)[*} —2E{[y(n) *}* — [E{y(n)*}

Since E{|y(n)|?} = 1 and E{y(n)?} = 0 (by circularity of the CPM
signals), the above quantity also reads:

Com*[y(n)] = E{ly(n)|*} =2 =E{(b(n)* = 1)’} - 1

and (8) follows. In addition, if [|A||; = 1, then E{|A[z]s ;(n )} =
1 and from (8) J is obviously upper-bounded by 1. Equatlon )
follows immediately. |

In previous works concerning BSS of non i.i.d. signals [9],
Equation (9) corresponds to a technical assumption. In our particu-
lar case, we do not need this assumption, and we have proved that
it is fulfilled, even when working in the infinite dimensional vector
space of IIR filters.

3.3 Validity of the contrast

We here state and prove that J is a contrast indeed.

Proposition 1 Over the set of unit-norm global filters (||g|| =
the function J in (6) defines a contrast for CPM source signals.

Proof: The signal y(n) can be written:

N N
y(n) = Zl Z llg; 1l &;l2)s;( (10)
£ A
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_ &l
= lgylly
From (10), the proof'is similar to the one in [9] and it is skipped due
to lack of space. |

Proposition 1 and Lemma 1 together show that the CM criterion
is also a valid separation criterion: to our knowledge, this does not
seem to have been proved before, although many results have been
published concerning the use of the CM criterion to equalize i.i.d.
signals.

where we define g;[z] if [|g;|l; # 0 and g;[z] = 0 otherwise.

4. EQUALIZATION OF CPM SIGNALS
4.1 Characterization of the scalar filtering indeterminacy

In Section 3, we exhibited a contrast function which allows us
to separate one among the CPM sources. After the separation
(¥(n)),,cz, 1s a scalar-valued filtered version of one source, say for
instance the i-th one, which reads: y(n) = ¥, ., g;(k)s;(n — k)

Since our goal is to detect the data symbols (ai) ez @ possible
idea consists in equalizing the discrete-time signal (y(1)), ., prior
to decoding with a hard decision scheme. However, this equaliza-
tion step can be simplified by using the following proposition:

Proposition 2 Assume that E{|y(n)|*} = 1 and that the function J
in (6) is maximum. Then (y(n)),, is a modulus one sequence, that

is [y(n)| = 1 for all n and the sequence (g;(K)) ez, can be written
as

(k) = e?g(k—1), ke Z,

where ( is an integer, ¢ € [—T1, 1 and (&(k)) ., coincides with one
of the following sequences:

. i N in@
£0)= e 0) = g
« in(10h,—6 . X _ !
)= M0 o SH = (D)
#2)=0 §(2) = temss

8(k) being zero if k is different from 0, 1 or 2. Here, 0 is a parameter
in [—T, 1.

Proof: J reaches its maximum if and only if J(y(n)) = 1. Since

E{|y(n)[?} = 1, Lemma 1 applies and thus J,,(y(n)) = 0, which
proves that (y(n)), ., is a modulus one sequence. Now, the set of
digital filters which produce a constant modulus output signal when
the input is a CPM signal has been characterized in [1] and the re-
sults can be used to characterize the sequence (g;(k)); - |

4.2 General comments
We respectively denote by type I and type II the previous families of
sequences. In other words, the sequence (g(k)), is a rotated and

delayed version of either a type I or a type I sequence. If (g;(k)) ;7
is a (rotated and delayed version of a) type I sequence, the output
signal (y(n)),,cy, is such that for each integer n,

y(n)=€"? (ﬂs (n—0)+

sin 71, i

sin(7th; — 0)
sin 1th; si(n =t U)

where ¢, ¢ and 6 are the parameters defined above. Now assume
that 6 is such that 0 < 8 < 7k, In this case, 6 can be written
as 6 = 10h;@(T), where T is a certain parameter of the time inter-
val [0, 7] and where @ is the phase pulse introduced in (1). Using
Laurent’s representation (2), the above equation implies that for all
integer n, y(n) = e"”si(nTS — Ty — 1). In other words, the digital
filter 3, gi(k)z‘k can be interpreted as an interpolating filter (up to
a phase offset ¢). In this case, a synchronization step followed by
a classical CPM detection algorithm are only required in order to
recover the transmitted symbols (a},), ;-

Since the parameter 6 does not necessarily verify 0 < 8 < 71,
and since (g;(k)); .z may also be a type II sequence, the estima-
tion of the data symbols may require a more complicated proce-
dure. However, it is worth noticing that in any case, the use of a
SISO equalizer to recover the input sequence (s;(1)),, . is unnec-
essary. Indeed, Proposition 2 provides a parameterization of the se-
quence (g;(k)), ., and allows to replace a costly equalization step
by a simpler identification of the unknown parameters. For exam-
ple, a maximum likelihood estimator can be considered at every
point 8 of a discrete grid in order to estimate both the parameter 6
and the symbol sequence. More efficient methods, such as PerSur-
vivor Processing, have also been proposed for this task.

5. FROM A MISO TO A MIMO SOURCE SEPARATION
5.1 Adding decorrelation constraints

We here briefly explain how our MISO extraction procedure extends
to a MIMO separation. The main idea consists in repeating N times
the former procedure. However, in order to prevent from extracting
twice the same source, we restrict at each stage of the procedure the
set of searched separating filters.

Suppose we have obtained y,(n), a scalar filtered version of
5;(n) and let us see how we can obtain a second source. A simple
calculus proves that imposing Vk : E{y, (n)y*(n —k)} = 0 is equiva-
lent to the condition ||g;||; = 0 on the global filter. Rewriting Equa-
tion (10), the proof of Proposition 1 then easily generalizes to:

Proposition 3 Suppose y,(n) is a scalar filtered version of the

source s;(n). Then, under the constraints E{|y(n)|*} = 1 and
E{y,(n)y*(n—k)} = 0,Vk, J given by (6) is a contrast which leads
to the separation of a source distinct from si(n).

The above proposition can easily be generalized, leading to a global
MIMO separation method by adding supplementary decorrelation
constraints at each stage of the procedure.

5.2 Local post-optimization

The iterative procedure, as described hereabove, induces an accu-
mulation of errors due to estimation errors in the preceding source
extractions. We can alleviate the error accumulation effect by per-
forming a local post-optimization of J after each stage of the separa-
tion, with no decorrelation constraint but with an appropriate initial-
ization of the maximization algorithm. This idea has already been
proposed [11]. Our main contribution is to define a region over
which the unconstrained maximization converges to the expected
solution:

Proposition 4 Let g[z] be a separating 1 x N filter allowing to ex-
tract the i-th source. Then, g|z] is a global maximum of J over the
set

{g/ 0<llg—gl <land|g| =1}, (12)
and for any g in the above set, J(g) = J(&) holds only if g extracts
the same source as g does, that is ||g ;|| ; = 0 for j # i and ||g[|; = 1.

Proof: Let us suppose that the global filter g[z] is separating:

”gA]H] =0if j#iand [|g];=1.
J(B[E)s(m)) = supyy _, SOzl () = 1.

From (10) and (9), we obtain, using cumulant multi-linearity and
source mutual independence:

N
Jom) =Y lglI3@E s (m) < ; g 17 + llgillF-
= JFi

Introducing € £ i Hg]Hf € [0, 1], we have:

4 2\2 2
3 Il < (5l = &
J#L J#i
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and therefore:
Jy(n) <€+ (1-€)* £ g(e)

Assume now that 0 < ||g — g||* = Zyzl lg; *gAJH? < 1. Since
forall j # i we have g; [z] = 0, the above condition implies 0 < € <
1. If € =0, then J(y(n)) = J(&[z]s(n)) and ||g,]| ; equals O for j 7 i
and 1 for j =i. Otherwise, 0 < € < 1 and hence J(y(n)) < @(€) <
1 = @(0). Thus,

J(y(n)) < 1=J(g[s(n)),
which proves Proposition 4. |

6. SIMULATIONS

We first considered the mixture of N = 3 sources. The separation
result is shown in Figure 1 for one realization: we clearly see that
the post-optimization significantly improves the quality of separa-
tion. This results was confirmed by a Monte-Carlo study, which was
carried out with 4 sources and 5 sensors. The sources’ modulation
indexes were respectively 0.25, 0.4, 0.6 and 0.75 and the number of
samples was set to 1000. The filters were of length 4 and generated
with random coefficients. We introduced the separation criterion:

2
a manng”j

T
5, g, 12
Nnote that 0 < 7 <1 and T =1 if a source is perfectly extracted.

The Bit Error Rate (BER) was also calculated: the symbol de-
tection was obtained by a classical Viterbi-like CPM detection al-
gorithm for different values of the synchronization parameter 6 in
(11).

The mean value results for the criterion T and the BER are re-
ported in Table 1 for each source. One can again notice that the sep-
aration of the sources is successful. However, the post-optimization
procedure seems necessary to guarantee good results for the third
and fourth extracted sources.

no post-opt. post-opt.
T BER T BER
1source | 0.9978 | 0.0005 | 0.9978 | 0.0004
2" source | 0.9920 | 0.0031 0.9982 | 0.0005
3" source | 0.8889 | 0.0469 | 0.9944 | 0.0058
4th source | 0.8271 0.1459 | 0.9932 | 0.0048

Table 1: Mean values of the separation criterion T and the BER over
1000 Monte-Carlo realizations. The mixing filters were of length 4
and randomly driven with O = 5 sensors and N = 4 sources. The
number of samples was set to 1000.

7. CONCLUSION

We considered MIMO convolutive mixtures of several CPM
sources. The blind separation and detection of such non linear
sources is a challenging issue, which presents many interesting ap-
plications in communications.

Starting from the general BSS framework, we proved the va-
lidity of a cumulant based contrast function in the case of CPM
sources. The connection between this contrast function and the
constant modulus criterion has also been established: resorting to
recent results on equalization of CPM signals, we were then able to
characterize the solutions which maximize our separating criterion
and thus to apply classical demodulation algorithms to recover the
transmitted symbols.

Future works should consider the case where the sampling rate
is different from the baud-rate.

1 + 1 + 1 +
+ + + + +
0 + N 0 + 0 + +
+ + +
-1 + F -1 + -1 oy
-2 -2 -2
B 0 2 2 0 2 2 0 2
2 2 2

-1 * -1
-2 -2 -2
% 0 2 % 0 2 2 0 2
2 2 2
1 - 1 * 1
| i* 0 ** o, 0 *# #*
. e * d » _#
-1 * . -1 *y ¥ -1 £ 4
-2 -2 -2
% 0 2 % 0 2 2 0 2

Figure 1: Original sources (1% row) and reconstructed ones, without
local optimization (2" row) and with local post-optimization (3™
row) (Modulation indexes: 0.25, 0.75 and 0.4, 4 sensors, mixing
filter of length 4, 1000 samples.)
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