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ABSTRACT

In this paper, we describe a novel scheme for iterative demap-
ping, also known as turbo demodulation, of zero-padded
(ZP) OFDM. Our scheme includes an MMSE equalizer which
accepts a priori information delivered by an outer channel
decoder. By enabling the equalizer to process independent
reliability information about the encoded bits, the equaliza-
tion stage can be included in the iterative decoding process,
yielding superior performance when compared to iterative
demapping. We derive an MMSE equalizer that accepts
a priori information stemming from the outer decoder for
several mappings and incorporate an additional rate-one in-
ner code which removes the error floor, which is otherwise
present in iterative demapping.

1. INTRODUCTION

Coded OFDM is one of the prime modulation schemes in
modern wireless systems, which is due to its ability to effi-
ciently deal with frequency-selective fading channels. A pop-
ular scheme, which is also applied in the prospering WLAN
standards, is the combination of a convolutional code, an
interleaver, a QAM symbol mapper and finally the FFT
based OFDM modulation as depicted in Fig. 1. The com-
bination of coding, interleaving and modulation is known
as bit-interleaved coded modulation (BICM) [1] and since
OFDM decomposes a frequency-selective broadband chan-
nel into parallel flat-fading channels, the principles of BICM
and its decoding can be applied accordingly to the system in
Fig. 1. A near-optimum method with moderate complexity
for the decoding of BICM was first presented by ten Brink
[2] and later adapted to OFDM by Muquet et al. [3]. This
scheme is based on the turbo principle [4] and considers the
convolutional code as outer code and the QAM mapping as
inner “code”. The idea to include the equalizer in the turbo
iteration was presented by Tiichler et al. [5] in the context
of single-carrier BICM.

In the transmitter in Fig. 1, the data bits cx are en-
coded with a convolutional encoder and subsequently inter-
leaved to yield the bit sequence b =[bg---bn, 1], where
Nc is the number of subcarriers and the subsequences b,, =
[bn1 -+ - bng] contain @ bits belonging to one QAM symbol.
The bits b, take on the values 1 and the vector x contains
Nc¢ QAM symbols belonging to one OFDM symbol:

zo map (bO)
TN -1 map (bng —1)

with z, € Q@ = {a1,...,a¢}. The QAM alphabet Q is
assumed to be normalized and with zero mean, i.e. E[a;] =
O, Es éE[|ai|2] =1.
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Figure 1: Transmitter with (outer) convolutional code,

pseudo-random interleaver, QAM mapping and ZP-OFDM
modulation.

The ZP-OFDM modulation can be conveniently de-
scribed by

s = F x
" |Ong x N

where F with elements F,, = exp(]%,—’(fuu)/\/]\fc; v, =
0,...,Nc —1is the inverse Fourier matrix and 0,,x is the
n X m all-zero matrix. The guard interval length is Ng, thus
the length of the OFDM symbol s is Ns = N¢ + Ng. The
channel impulse response hi is assumed to have maximum
length Ng + 1, thus intersymbol interference is prevented
by the guard interval and the receiver input signal can be
written as

F

Ong x N

r :Hs—l—n:[HoHZp]{
=HyFx+n

}x—i—n

where the noise correlation matrix is given by E[nn™] =
Nolng, where (1) denotes conjugate transpose and I, is
the n X n identity matrix. The channel matrix H is the
Ns X Ng lower triangular Toeplitz matrix with first column
[ho---hng0---0]" and H = [Ho H,,] is its partition into the
first N¢ and the last Ng columns.

An iterative receiver structure for the ZP-OFDM sys-
tem is depicted in Fig. 2. The MMSE (minimum mean
square error) equalizer calculates an estimate of the QAM
symbol z,, from which the a posteriori probabilities (APP)
Plbng = £1|yn] are calculated and output as extrinsic L-
values F1. The inner component “decoder” is hence formed
by the MMSE equalizer and the APP calculation.

The extrinsic information from the inner decoder is de-
interleaved to yield the input Az of the outer APP decoder,
which implements the BCJR algorithm or one of its compu-
tationally more efficient approximations [6] to calculate the
extrinsic information 2 on the coded bits and the APP L-
values Déz) for the information bits. After interleaving, the
extrinsic information Fs is fed to the inner “decoder” as a
priori information A;. This process is iterated several times
and the estimates ¢, on the data bits are finally obtained by

hard decision of the L-values Déi).
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Figure 2: Iterative receiver for ZP-OFDM.

2. MMSE EQUALIZATION WITH A PRIORI
INFORMATION

In the following we derive the inner decoder of the itera-
tive receiver in Fig. 2. This derivation follows the lines of
[5], but is adapted to ZP-OFDM and additionally consid-
ers non-Gray 8-PSK and 16-QAM mappings which provide
better performance when used in conjunction with iterative
decoding.

Reliability information about the bit b,q is given by its
a priori probability P [b,q = 1] and is expressed as a priori
L-value
P [bng = +1]
P [bng = —1]

In order to use this information in the MMSE equalizer,
we first derive the mean and the variance of the QAM symbol
Zn, given the a priori L-values A,, = [An1---Ang]. The
mean T, and variance v, of x, are given as

ZQ
Z1',:1
29 2 2

Cov(xn,zn) = Z_il |ai|” P [zn = as] | — |Zn]

Ang £ 1n

Tn E[z,] =

Un

The bits associated with the symbol a; are written as b; =

[I;il . -qu], e a; = map( i). Since the bits by are inde-
pendent due to the preceding interleaver, we can express the
symbol probabilities as

Plon=a] = P[bn:Bi]:ﬁP[bnq:f%q]

g=1
Q
1 An
= 33 ” <1—|—l)u1‘cza,nh—2 )

For PSK mappings, the variance is given as
Up =1— |a‘:n|2

With the abbreviations «; 2 tanh (4,:/2); Gnm =
A

AnQm,...; L = v/—1 we can write for mean and variance
for the mappings given in Table 1 and Table 2:

QSPK gray: &, = — (a2 +ta1) /V2
QPSK Anti-Gray: T, = (—a1 + tai2) /\/5
8-PSK Gray:
Zn=7 ((-1=c(1+v2)ar + (-1 =v2+1) a2
+(1—\/§—L)Oé13+ (1+L(1—\/§))0¢23)
8-PSK Anti-Gray:
a‘:n:i((—l—i—\/ﬁ—L)az—l—(—l—i—L(l—ﬂ))ag
+(1+vV2+1) arz+ (1 — (1 ++?2) ars)
16-QAM SP:

Table 1: QPSK and 8-PSK s

ymbol alphabets (:=v=1).

8-PSK QPSK
i Gray Anti-Gray Gray Anti-Gray
1 1 1 (142)/V2 (142)/V2
2 | (+40/v2 . (-140/v2 | (1-0/v3
3| (—140/v2 - A-0/v2 | (-1-0/v2
4 v -1 (—1—0)/V2 (—140)/V2
5 (1-2)/V2 (=1+42)/V2
6 —1 (—=1—2)/V2
7 -1 (142)/V2
8 | (c1m9/v2 | a-y/v2
Table 2: 16-QAM symbol alphabets.
[ SP Anti-Gray | Bol
1 —1—2 3432 1432
2 1—2 —3—-32 3—32
3 —3—312 —1432 —1—-32
4 3—32 1432 1+
5 3—1 —3+1 —3+1
6 —3—1 3—1 3—1
7 1-32 142 1—2
8 —1—-32 —1—1 —3—
9 3+32 1—2 3432
10 —3432 —14 —1—2
11 142 —3—1 —14
12 —14 3+ —3—32
13 | —1+30 —1-3: 1-32
14 | 143 1+30 —1+3¢
15 —34 3—312 —3+432
16 3+ —3+432 3—1
Ty = %0 (a3a + 2124 + 1201 — Lag)
=1+ % (—a13 + ai23) — |ﬁf’n|2
16-Q M Anti-Gray
Ty = %( Q124 — 20234 + 20014 + Laiag)
=1+2 (alz + ai13) — |ﬂf’n|2
16- Q
Tp = ﬁ{—og — g — 3a3 + a4 + 20012 — 20014
+2023 + 20024 + 123 + 3124 + Sa1zs — 234
441234 + L - [0 + a2 — 203 — 204 + Q13 — Q14
423 + 3aza + 20123 + 2c124 — B34 — Saozal }
v, = 14 1—10(041 — a3+ a12 + 2013 — ovia + a3

+aza — 24 + 200134 — Q234 — 4aiazs) — | Tl

The 16-QAM symbol alphabet “Bol” was found by
Boronka [7] by an extensive search as the mapping that
reaches the lowest BER floor in iterative demapping. Unlike
the other symbol alphabets, it contains almost no structure,
which explains the lengthy expressions for Z,, and vy,.

The correlation matrix of the receiver input and the cor-
relation between receiver input and QAM symbol z,, are de-
fined as

R.r £ Cov (r,r) = E[rr’"] —
Elrz,] — E[r] E[z;]

E [r] E[r"]

Cov (r,z,) =

The equalizer outputs a linear estimate of the transmitted
symbol z,, given by

Yn=glr+b, ,n=0,...,Nc —1 (1)

The solution that minimizes the mean square error (MSE)
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E[|yn — #4]?] can be calculated as [5]

gn =

bn = Zn

R, Cov (r,z,) (2)
— g/ Elr]
By defining d, 2 HoF [O1xn—1 1 Oixne-1]" as the

n-th column of HoF, we can express the correlation vector
and matrix as

Cov(r,z,) = vnd,
Rir = HoF Rux FH{' + Noly, (3)
Rxx = diag(vo,vl,...,w\zc_l)

where the last line is justified by the independence of the
symbols z,. With (2), we have determined a linear MMSE
equalizer that takes into account a priori information given
by the L-values on the bits b,q. This MMSE equalizer can
thus be included into the iterative decoding loop and can be
considered part of the inner decoder. In iterative decoding
schemes each component decoder should pass only extrinsic
information to the other decoder' [4]. The estimate v, ac-
cording to (1),(2), however, depends on A,, via Z,, and v,,. In
order to pass extrinsic information only, we set A, = 01x@
for the calculation of y,. This implies Z,, = 0 and v,, = 1,
and we thus get from (2) with (3):

vnfn, where f, 2 R;'d. (4)

Enlu,=1 = <Rrr +(1-— vn)dndg) - d,

8n =
£

[1>

With (4) and the matrix inversion lemma, which in this case
results in a very simple expression [5], we can express f;, as
a scaled version of f,,:

1

f) = knf, _
' 14+ (1 —v,)flfdy

with k, =

The estimate that contains a priori information from all
other symbols is thus given by

Yn = kot (r — E[r] +Zndn)

The second step in the inner component decoder consists
of the calculation of the APP L-values which are defined as

Plbng = +1yn]
P [bng = —1|yn]

Ybie, P <yn|bn = Bi) P [bn = Bi:|
In
Zﬁies,l p (yn|bn = 137) P [bn = Bz}

Dy 2 Lo (buglys) =In

where B4 £ {BZ : l;iq = 41}. This expression can be writ-
ten, making use of Bayes’ theorem and the independence
of the bits bnq € {—1,+1}, as Dnq = Ang + Enq with the

extrinsic information
ZBiEB+1 p (ynlbn = b7) exp <%An§b“§)
A

E.g=In — —
b5, P (yn|bn = bz’) exp (% m?bil?)

The vector A,z is obtained from the vector A, =
[An1 - Ang] by deleting the element A,,; the same holds

I Extrinsic information is information about one bit that can
be gleaned from the knowledge of all other bits, considering the
code constraints.

Y gzlp
(a) ) b,

leZ
D(m)
APP%Q A |2 B4

4" |decoder| = I1
k=IP

(m)

A P

e e
k#lP ! 2

Figure 3: (a) Inner recursive rate-one convolutional code
with code doping. (b) Changes in receiver structure to in-
corporate the corresponding inner decoder.

for Biq. As in [5], we assume that the p.d.f. p(yn|bn = BZ) =
P (yn|zn = a;) is Gaussian:

1 exp _|y’ﬂ _)u‘n1|2
o2, on

Then, the mean and the variance of y, can be calculated as
follows:

p (yn|bn = Bi) =

tni = Elyn|zn = ai]
= a;-koftd,
Jf” = Cov (yna yn|xn = ai)

- K2fMa, (1 - vndﬁfn)

where we made use of d,, = Rirf,, according to (4). Note

that o2; does not depend on 4, and thus not on Bi, which
allows us to write Eyq as

ZBieB+1 exp <pm' + %Anébﬂi)

Enq = In - - (5)
267‘,66_1 exXp (Pm + EAnqbiq)
2
PP Sy Y1 [E7zn — ai - £1da| “
ni 0',,2,“; f'rz,-‘dn — Un |f7‘¢-‘dn|2
2 £ r—E[r]+7.d,

Summands in the nominator of (6) that do not depend on a;
cancel out in (5). We may thus replace p,,; by

/ a 2Re {ai -2}, } — |ai|* £1¢d,, ™
Pri 1—v.fd,

>

where we used £*d,, € R. For PSK, the second summand in
the nominator of (7) cancels out as well. The extrinsic infor-
mation according to (5),(7) is thus passed via a de-interleaver
to the outer decoder.

3. REMOVAL OF THE ERROR FLOOR

Iterative demapping systems for BICM typically suffer from
an error floor which cannot be removed at the receiver side [2,
7, 8]. A possible countermeasure against this behavior is the
insertion of an inner encoder according to Fig. 3a between
the interleaver and the QAM mapper at the transmitter.
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Figure 4: BER curves for ZP-OFDM. The reference receiver
(IDEM) employs MMSE equalization with iterative demap-
ping. The proposed receiver ("turbo MMSE") has an earlier
turbo-cliff and a similar error floor behavior.

Only for every P-th bit, the input bit wg is substituted by
the differentially encoded bit u}:

Uk
bk = { /
Uy,

In the following P = 50 is chosen. This process is called
code doping and since it adds no redundancy it has no er-
ror correcting capabilities. Nevertheless, it introduces de-
pendencies between adjacent bits and in conjunction with
the corresponding decoder at the receiver side (Fig 3b) it re-
moves the error floor. For a more detailed explanation based
on transfer characteristics in the EXIT chart, we refer to [8].

At the receiver side, the corresponding APP decoder,
which is a standard MAP decoder based on the BCJR algo-
rithm, is inserted as illustrated in Fig. 3b.

modp (k) # 0
modp(k) =0

4. SIMULATION RESULTS

Simulations have been performed with settings according
to a WLAN environment, i.e. the number of subcarriers
was chosen as N¢ = 64 and Ng = 16 guard samples have
been inserted. For each OFDM block, a different realiza-
tion of the channel impulse response hy according to model
A of [9] has been drawn. For the outer code, the memory
2, recursive systematic convolutional code with polynomials
G, = 07,G = 05 has been used. The interleaver is pseudo-
random and of length 51200 bits. The reference receiver
employs MMSE equalization without a priori input and it-
erative demapping (IDEM) [2, 3] for the equalized symbols.
Fig. 4 shows the BER curves for the transmitter in Fig. 1
and the described receiver vs. the reference receiver. The
mapping in both systems was “16-QAM Bol”, which was
found in [7] as the 16-QAM mapping with lowest error floor
when decoded iteratively. As is well known, for iterative de-
coding, the otherwise optimal Gray mapping performs worst
and is hence not considered in this paper. Fig. 4 shows a
performance difference of nearly 0.5 dB in favor of the pro-
posed eqlialization scheme and the expected error floor at
B, =107

The BER curves for the system with inner coding are
depicted in Fig. 5. The inner code successfully removes the
error floor and the coding gain in favor of the proposed sys-
tem is reproduced for this case as well.

10 T
no iteration
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Figure 5: BER curves for ZP-OFDM with inner rate-1 code
iterative demapping (IDEM) and turbo MMSE.

5. CONCLUSION

We presented a “turbo MMSE” receiver for ZP-OFDM which
incorporates the equalization stage into the iterative decod-
ing process and achieves a coding gain between 0.25 and
0.5 dB when compared to the reference receiver which em-
ploys a standard MMSE equalizer followed by an iterative
demapping scheme. To our knowledge, this reference re-
ceiver is the best decoder for ZP-OFDM presented so far.
It is also shown how this "turbo MMSE" equalizer fits into
a BICM system with an inner code which removes the error
floor without adding additional redundancy.
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