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ABSTRACT 

Speech recognition is one of the key technologies to 
produce voice-control devices. However, the presence of 
different sources of degradation is an ubiquitous problem. 
This paper presents a robust microphone array processing 
technique to enhance speech under the influence of noise 
and reverberation in an automobile environment. The 
proposed structure combines a simple two-microphone First 
Order Differential Null Beamformer with Spectral 
Subtraction techniques. The paper also includes an 
evaluation of the performance of the algorithm in a real car 
environment. The results show a noticeable reduction in 
word error rates when the enhancement front-end is applied 
to a standard speech recognizer. 

 

1. INTRODUCTION 

Speech produced in a running car is perturbed by noise and 
reverberation. In those scenarios, a main objective 
consisting on increasing the contribution of the direct 
component relative to reverberant components of signals is 
pursued. As far as speech enhancement is concerned, 
microphone arrays and beamforming techniques have been 
widely applied, as they are able to perform dereverberation 
and noise suppression at the same time [1]. Usually, array 
beamforming is combined with other techniques as 
Independent Component Analysis [2][3], Spectral 
Subtraction [4] or Linear Prediction Analysis [5]. In the car 
environment, those structures may also benefit from the fact 
that desired speakers, fundamentally the drivers, are placed 
in a constrained region [6]. 

Through this paper, a speech enhancement system 
based on the use of a First-Order Differential Microphone 
(FODM) for reverberation and noise estimation purposes, 
and its application to Spectral Subtraction (SS) techniques is 
presented [7][8][9]. Differential microphone arrays provide 
high directional gain requiring a lower number of 
processing elements, as compared with common approaches 
[10]. Essentially, the method proposed in this paper applies 
a FODM operating in the time domain. The main aim of this 
procedure is to determine the contribution of desired speech 
signals in a specified constrained region against any other 
sources. Once the amount of noise and reverberation is 
estimated, the residual interference is then eliminated a by 
smoothing filtering in the frequency domain. 

This method is intended to be a pre-processing stage of 
a Robust Speech Recognizer in automobile scenarios, as the 
one presented in Figure 1. 

2. FIRST-ORDER DIFFERENTIAL MICROPHONE 

2.1.  Overview of the FODM 

A differential microphone array consists of two 
omnidirectional sensors separated a distance d. Figure 2 
shows the structure of the basic cell proposed in this work. 
As it may be seen that element operates in the time domain 
and resembles a delay-and-sum beamformer, where delays 
of both branches have a fixed value τ. The final output is 
obtained subtracting the result of one individual branch 
from the other. Finally, channel mixing is controlled by a 
steering parameter β, where possible values of β are 
restricted to the range [0.0, 1.0]. 

In our case, the FODM, despite of its simplicity, recalls 
the behavior of a null beamformer controlled by the β  
parameter. This mechanism shows a transfer function in the 
frequency domain, which may be formulated as 
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Figure 1. General framework of a two-microphone 
system devoted to robust speech recognition. 

1955



ϕ being the angle of arrival, ζ half the array travel time, f the 
frequency of the signal, k the delay order, d=2D the 
microphone distance, and fs the sampling frequency. 

This function shows for a frequency f<fs/2 a sharp 
notch at an angle given by 

ϕn= arcsin{
fD2
c

π
arctan[(1 –2β) tan(π k f/fs)]} 

 

(4)

c being the sound propagation speed. 
The last expression establishes the relation between 

useful bandwidth and maximum-steering angle. As it may 
be noticed, the relation depends of three factors: sampling 
frequency, microphone separation and the fixed channel 
delay. 

Figure 3 shows the results of evaluating (1), when 
plotted against f and ϕ for one value of the steering 
parameter β. As it may be noticed, a fixed beta value not 
always implies the cancellation of source frequencies 
originated from a single angular direction of arrival. In fact, 
that is only the case for only three beta values: 0.0, 0.5, and 
1.0. Therefore, the value of β, which produces the highest 
degree of cancellation, depends not only on the value of the 
incoming angle ϕ, but also on the signal frequency f. This 
property of the FODM implies that for broadband signals 
like speech, the spectra of interest should be divided into 
different frequency bands, throughout the use of bandpass 
filters, and then replicating the beamformer cell previously 
presented. 

More exactly, the relation among source angle of arrival 
ϕ, signal frequency f and values of β, is given by the 
following expression 
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2.2. Noise and reverberation estimation FODM based 

The estimation of the amount of noise and reverberation 
presented in a speech signal captured by the array will be 
calculated as shown in Figure 4. 

The null-beamforming task is executed only for the 
three directions that do not require a frequency-dependent 
solution. Those positions correspond to broadside (β= 0.5) 
and to the maximum steering angles (β= 0.0 and β= 1.0). In 
this case, broadside represents an average location for the 
car driver whereas the other two will be linked to 
background interferences. It is important to notice that 
FODM outputs ideally contain signal components not 
arriving from the tracking angle. This means that an active 
source that is located in the center of the array must be 
eliminated in greater measurement when the beam is 
focused towards this position. In the same way, the 
minimum of outputs, corresponding to boundary angles, 
constitutes a valid reference of the background disturbance 
level. 

 

 

This procedure takes place for every bin in the 
frequency domain, so that, FODB output signals (s0.5(t), 
s0.0(t) and s1.0(t)) are segmented in overlapped windows and 
transformed using the short-time Discrete Fourier 
Transform. A set of subtraction weights is then given by 
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being M the window size, 0≤ m ≤ M/2-1 the frequency bins, 
λ a gain factor, and θ a bias parameter. 

As a final step, weights WFODM are fitted within the 
range [0.0, 1.0]. 
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Figure 2. Structure of the two-microphone null beamformer. 
Microphones are separated a distance d=2D, being ϕ the angle 
of arrival for an incoming sound source. The angular tracking 
factor is modeled through parameter β. This processing element 
introduces a delay interval T=kτ, being τ the time delay unit. 

 
Figure 3. Module of the FODM transfer function for 
d=5 cm, k=1, fs=8000Hz, and β=0.55. 
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Figure 4. General framework of the structure based on the 
FODM to obtain subtraction weights WFODM 
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3. SPECTRAL SUBTRACTION 

To implement the filtering in the spectral domain, weights 
WFODM(m) will be considered relevant estimators. The 
procedure we proposed may be seen in Figure 5. 

First of all, one of the microphone input signals s(t), 
corresponding to m1(t) or m2(t), is segmented in overlapped 
windows and transformed into the frequency domain 
applying the same configuration introduced in the last 
section. After that, these values are passed to a filter with 
exponential decay given by 

( ) ( )( ) ( ) ( )mgmSmg n
a
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where α is a coefficient that controls the log-power rate 
update. 

Once we have adapted the incoming signal energy, the 
calculation of the subtracting-signal at frame index n and 
frequency index m or gn(m), is accomplished by a new 
exponential decay filter controlled by the set of weights 
WFODM(m), previously studied 

( ) ( ) ( ) ( )mgmWmgmWmg nFODMSFODMn 1)()(1 −+−=  (8)

As it may be noticed, the above expression implies that 
a weight equal to 1.0 prevents from updating the estimation 
of gn(m) at all. On the other hand, a weight close to 0.0 
produces a fast adaptation. 

Finally, the exact amount to be subtracted is generated 
and the subtraction itself is performed, producing an 
enhanced signal in the time domain z(t) 
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4. RESULTS AND DISCUSSION 

In order to examine the validity of the method 
proposed, several speech recognition systems were built and 
tested, using the framework presented in Figure 6. The 
method proposed through the paper provides a robust 
preprocessing stage to the shared speech recognition engine. 
A pair of examples, related to an original speech signal and 
a processed or enhanced one may be seen in Figure 7 and 
Figure 8. 

A subset of the Aurora3-SpeechDat Car Finnish 
database is used for testing purposes. The corpus, which 
contains realizations of connected digits uttered in a realistic 
automobile environment, is divided in two different groups: 
train and test. Each group has three different categories 
related with the amount of distortion contained in the 
recordings: quiet, low, and high. In our experiments, we use 
the recordings associated to channels ch2 (microphone 
placed at the ceiling of the car in front of the speaker behind 
the sunvisor) and ch3 (microphone installed at the ceiling of 
the car over the mid-console and near the rear mirror). As it 
may be noticed, that configuration is exactly the one 
previously introduced in Figure 1. 

 

 
 

It is important to remark regarding SpeechDat Car 
databases that although several microphones inputs are 
simultaneously captured, those compilations are not array-
processing oriented. In particular, two aspects are relevant 
related to microphones m2 and m3: sensors have different 
characteristics as they are models produced by different 
manufacturers and, distance between them is not defined 
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Figure 5. Structure of the spectral subtraction module that 
exploits WFODM estimators. 
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Figure 6. a) Baseline HTK based speech recognizer. 
b) Enhanced system incorporating the method proposed 
in this paper to the same speech recognition engine. 

 
Figure 7. Power spectrum of an utterance contained in the 
Aurora 3 database and produced by a male speaker. 

 
Figure 8. Power spectrum of the enhanced signal associated 
to signal in Figure 7, being α=0.33, λ=5.0 and θ=0.5. 
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precisely. However, the spread availability of the corpus 
makes it suitable for robust speech recognition evaluations. 

The recognition experiments are established by 
selecting different material from the training set of the 
database: set A includes files labeled as quiet, set B 
incorporates also files with low distortion and, finally, set C 
comprises all the training material available. The test 
material is the same for the threes cases and consists on 
3126 words. The front-end extracts energy plus 36 MFCCs 
(12 cepstrum, 12 delta cepstrum and 12 delta-delta 
coefficients). The HMMs are built with 16-state whole word 
models for each digit in addition to a begin-end model and a 
word-separation one. Finally, models have 3 diagonal 
Gaussian mixture components in each state. 

 

Table 1 contains Word Error Rate (WER) results for the 
two baseline systems. Baseline means no enhancement is 
applied to signals linked to microphone ch2 or microphone 
ch3. As it may be clearly seen, there is a high disparity 
between recognizer performances when channel ch2 is 
selected as system input as opposed to when ch3 is chosen. 

 

ch2 Deletions Substitutions Insertions WER 
Train set A 104 491 916 48.34%
Train set B 62 71 234 11.74%
Train set C 62 53 196 9.95%

 

ch3 Deletions Substitutions Insertions WER 
Train set A 271 204 275 23.99%
Train set B 80 47 172 9.56%
Train set C 70 51 208 10.52%

Table 2 presents the results when the method proposed 
in this paper is applied as a pre-processing stage to the same 
front-end. The improvement is significant for both channels 
and the three training sets except for channel ch3 and train 
set A (high mismatch between training and testing material). 
Finally, the relative improvement is summarized in Table 3. 

 

FODM Deletions Substitutions Insertions WER 
Train set A 94 401 498 31.77%
Train set B 58 84 121 8.41%
Train set C 48 65 162 8.80%

 

ch2 Deletions Substitutions Insertions WER 
Train set A 9.62% 18.33% 45.63% 34.28%
Train set B 6.45% -18.31% 48.29% 28.34%
Train set C 22.58% -22.64% 17.35% 11.58%

 

ch3 Deletions Substitutions Insertions WER 
Train set A 65.31% -96.57% -81.09% -32.40%
Train set B 27.50% -78.72% 29.65% 12.04%
Train set C 31.43% -27.45% 22.12% 16.41%

 

5. CONCLUSIONS 

The combination of a First-Order Differential 
Microphone structure and Spectral Subtraction techniques 
constitutes an efficient approach to the speech enhancement 

problem in noisy and reverberant environments. The 
proposed method requires neither a Voice Activity Detector 
nor a priori knowledge of the working framework. Speech 
recognition experiments carried out with real data taken 
form the Aurora 3 database show a noticeable reduction in 
word error rates, especially if strong sensor response 
mismatches have to be assumed. 

The simplicity of the audio acquisition equipment and a 
moderate computational complexity of the solution allow 
building end-user products at a reasonable cost. 
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