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ABSTRACT

Source localization in shallow water environment is a
crucial issue in underwater acoustics. Many methods based
on Matched Field Processing (MFP) or on modal decomposi-
tion (also called mode filtering) have been developed using a
vertical array. The conventional mode filter separates modes
using a vertical array of hydrophones. In this case, modes
amplitudes are estimated by spatial integration of the pres-
sure field which becomes impossible with a horizontal array.

In this paper, we propose an efficient method to estimate
the source depth by modal decomposition of the pressure
field recorded on a horizontal array of hydrophones. Modes
amplitudes are estimated using the frequency-wavenumber
transform, which is the 2D Fourier transform in time and ra-
dial distance. Then predicted modes amplitudes are com-
pared to measured modes amplitudes, and source depth is
estimated. Robustness against noise of the method is studied
and application on real data is presented.

1. INTRODUCTION

Passive source localization in waveguides has been studied
for many decades in underwater acoustics. For this purpose,
beamforming techniques are widely used but they are inap-
propriate in shallow water environment because they do not
consider multipath arrivals and ocean acoustic channel com-
plexity. In this case, Matched Field Processing can be used
as it takes into account oceanic propagation [1, 2]. MFP con-
sists in building and maximizing an objective function, which
is often the correlation function between modeled acous-
tic field and pressure field recorded on an array of sensors.
Modal decomposition is another alternative to estimate the
source depth [3, 4]. This approach uses the property of modal
propagation in a shallow water waveguide and estimates the
source depth using modes amplitudes (also called modes ex-
citation factors). These modes amplitudes are usually esti-
mated by spatial integration (in depth) of the pressure field.

In this paper, we use modal decomposition to estimate the
source depth. There are two main differences with classical
modal decomposition :we use a horizontal array instead of
a vertical one, and as a result, modes amplitudes estimation
method is different : modes excitation factors are estimated
using the frequency-wavenumber transform. After this es-
timation, we seek to match up measured modes amplitudes
with predicted modes amplitudes. This predicted modes am-
plitudes are obtained using the frequency-wavenumber trans-
form of simulated data at different source depths.

After a short presentation of guided propagation in shal-
low water environment, we develop a matched mode method
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of source depth estimation based on frequency- wavenumber
transform. A study of the robustness against noise of this
method is presented and we apply it on real data.

2. NORMAL MODES IN AN OCEANIC
WAVEGUIDE

Normal mode theory is appropriate for low frequency waves
propagation at long range in an oceanic waveguide. Indeed,
at long range, there are so many totally reflected waves (at the
surface and at the bottom) that it is not possible to consider
the pressure field as a sum of a few rays. To show it, let us
consider a perfect waveguide made of a homogeneous layer
of fluid between perfectly reflecting boundaries at z = 0 and
z=D. c represents the water layer velocity and p its den-
sity. The study is made for a harmonic point source located
at depth z = z; and at range » = 0, but results are similar
for a broadband source. Acoustic pressure P(r,z,t) received
at C(r,z) can be expressed by P(r,z,t) = p(r,z)exp(—icr)
where p(r,z) verify the Helmholtz equation :
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with the pulsation w. Using this expression, boundaries
conditions and technique of “separation of variables” [5],
we seek a solution of the unforced equation in the form
p(rz) = @(r)é(z). Then, acoustic pressure field at long
range can be expressed as a sum of modes:
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where modes amplitudes ), are functions of the source

depth z; :
W(zs) = \/%sin (kzmzs) 3)

with kz,, = (2m — 1)11/2D. Fig. 1 represents modes ampli-
tudes as a function of source depth. Two examples at dif-
ferent source depths : zg, = 0.2D and z5, = 0.4D are also
presented.

This short study of propagation in a shallow water waveg-
uide shows us that the source depth z; only appears in modes
amplitudes. As a result we use these amplitudes to esti-
mate the source depth. Many methods using this property
have been developed, they are called modal decomposition
or mode filtering.
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Figure 1: Modes excitation factors function of the source
depth, two examples at different source depths zg, and zg,

3. MATCHED MODE METHOD OF
LOCALIZATION

3.1 Principle

The principle of modal decomposition consists in estimat-
ing mode amplitudes to perform localization. In most cases
these modes excitation factors are estimated using pressure
field recorded on a vertical array of sensors and the prop-
erty of mode functions orthogonality in a waveguide [3, 4, 6].
Then, source depth can be estimated by “matching” predicted
modes amplitudes to measured modes amplitudes (Fig. 2).
To perform this comparison, we maximizes an objective
function n (which is the opposite of a cost function). The
success of source depth estimation depends on the number
and on the quality of modes amplitudes estimations.

In this paper, our approach is somewhat different as we
use a horizontal array of sensors laid on the floor. The pre-
vious approach to estimate modes excitation factors can not
be used and as a result, we estimate modes excitation factors
using the frequency-wavenumber transform.
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Figure 2: Modal decomposition principle

3.2 Modes excitation factors estimation

The ”frequency-wavenumber” representation is the modulus
of the 2D Fourier transform of a section P(r,z,¢) in time ¢
and radial distance r at a given depth z. This representation,
named f — k representation, is :

Pri(kryz, f) = H//P(r,z,t) exp(—2m(ft — k,r))dtdr

As we use a horizontal array of sensors, it is possible to
build the /' — k transform of the recorded section. A previ-
ous study of /' — k representation for guided propagation has
shown that modes are separated in the /' — k plan [7]. As a
result it will be easy to extract modes excitation factors from

it. Fig 3 shows two examples of f — k representations ob-
tained in a perfect waveguide for two different source depths
zs, = 0.2D and zg, = 0.4D. For the source at 0.4D, mode
3 1is not excited whereas it is for the source located at 0.2D,
which is consistent with propagation theory (Fig. 1). That
shows us that modes amplitudes can be extracted from the
f — k representation.
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Figure 3: f— k representations simulated in a perfect waveg-
uide at two different depths : 0.2D (left) and 0.5D (right)

To extract modes excitation factors, we have to find areas
of the f— k representation where modes exist. We first con-
sider a Pekeris waveguide with the following parameters: H,
the water depth, V| the P-wave velocity in the water layer, V>
the P-wave velocity in the first sediment layer, p; the den-
sity of the water layer and p, the density of the sediment
layer. k = (k,k:) is the wavenumber and can be projected
on distance and depth axis: k; = kcos 6y, k, = ksin 6; with
k= (A)/ V.

Using this model, for each mode m the relation between
the frequency f,, and the incident angle 6, (or the horizontal
wavenumber k;) is described by:

211/ H cos 6; 1 P1
(5)

This equation provides areas of the f — k representation
where modes exist. Using this relation, a binary mask is ob-
tained. But as it is obtained using a Pekeris model, it do not
exactly fit the real waveguide. As a result, we dilate the mask
(Fig. 4) as for real data, modes will be located on regions and
not on a line.
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Figure 4: Initial and dilated mask for mode 3

Then, f'— k representation of the section is multiplied by
this dilated mask. The mean value of the ' — k on the mask
region represents the mode amplitude modulus. To compare
these modes excitation factors between different configura-
tions, we have to normalize them. Indeed, raw data ampli-
tude is often modified by preprocessing (A/D converter gain,
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amplitude gain). To avoid this problem we made the follow-
ing normalization: sum of the modes amplitudes modulus is
1. We obtain modes excitation factors (¢, ...c,). The princi-
ple of modes amplitudes estimation is represented on Fig. 5.
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Figure 5: Modes amplitudes estimation using f — k transform

3.3 Depth estimation

As modes amplitudes are extracted on real data, we have
to compare them to predicted modes amplitudes. To obtain
these modes amplitudes, we place a test point source at each
depth in the guide. The acoustic field at all the elements of
the array is calculated. Simulated fields are obtained using a
finite-difference method for modeling propagation of P and
SV waves in heterogeneous media [8]. Simulations are made
in an environment similar to the real environment (environ-
ment identification is made using [7] and [9]).

Then, we extract predicted modes amplitudes using the
method presented above. The last step, to compare measured
modes amplitudes to predicted modes amplitudes, is to max-
imize the objective function :

nb

G:lOlog10< » m_CA )2> (6)
Lsimu real

mges

where nb,, is the number of modes. Then the estimated
source depth is the depth that maximizes the objective func-
tion G.

4. APPLICATIONS

Techniques described above are now used to estimate the
source depth in two different environments : a noisy simu-
lated environment and a real environment.

4.1 Sensitivity to noise

To study robustness against noise, we made many simula-
tions in a Pekeris waveguide. Simulations are made using a
finite-difference algorithm developed by Virieux which mod-
els P-SV waves propagation in heterogeneous media [8]. The

acoustic source (1-100 Hz) is located in the water and a hor-
izontal array of 120 sensors laid on the bottom records the
pressure field (cf Fig. 6). On each simulation a Gaussian
white noise is added. For each Signal to Noise Ratio (SNR),
we simulate the propagation of 90 sources located at different
depths in the waveguide. Then source depth is estimated us-
ing method described above and we can compare estimated
and real depths. Results are presented on Fig. 7. For each
Signal to Noise Ratio, we plot the error made on depth esti-
mation.
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Figure 6: Environment used to simulate a Pekeris waveguide
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Figure 7: Error on depth estimation for different SNR

As a result, source depth estimation is nearly perfect for
high SNR (12 dB) and still satisfactory for a SNR of 6 dB
(75% of sources depths are estimated with an error smaller
than 4m). When the SNR begins to decrease (SNR =3 dB
or 0 dB), source depth estimation is less precise and the per-
centage of false depth estimations is around 33%.

4.2 Application on real data

We now estimate source depth on real data from the North
Sea. The source is an air gun (5-80 Hz)located in the water
layer. The pressure field is recorded by a horizontal array of
240 hydrophones. These hydrophones are regularly spaced
(25 m) and laid on the bottom. The experimental geometry
is shown on Fig. 8 and allows us to use methods described
above. Time sampling is 4 ms.

The first step consists in estimating geoacoustic param-
eters. Using [7] and [9], estimations are :V, = 1520 m/s,
Vs =0m/s, D =130 m for the water layer and V,, = 1875 m/s,
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Figure 8: Geometry of the experiment

Vs = 800 m/s for the bottom. Then using f — k representation
(Fig. 9) and methods described in section 3, modes ampli-
tudes are calculated (Fig. 10). A set of simulations at differ-
ent source depths is realized. For each simulation, modes
amplitudes are calculated (two examples are presented on
Fig. 10) and compared to modes amplitudes estimated on
the real data using function G (cf Fig. 11). The source depth
estimation is given by the depth that maximizes G: we find
Zestimated = 17m. We do not have the exact value of the source
depth but as the source was an air gun, it was between 10 and
20m which is consistent with the estimated depth.

60 ST S S S S—

Frequency (Hz)

‘Wavenumber (1/km)

Figure 9: f — k representation of the section recorded on the
horizontal array
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Figure 10: Modes excitation factors (normalized) of the real
data and of some simulated data

5. CONCLUSION

In shallow water environment, wave propagation is mainly
described by propagating modes. A study of this propaga-

Objective function G (dB)

60
Depth (m)

Figure 11: G function of the simulated source depth

tion shows that modes excitation factors depend on source
depth. As a result, it is possible to estimate source depth us-
ing modes amplitudes. Recording the pressure field on a hor-
izontal array of sensors, we develop a method based on f — &
representation to estimate these amplitudes. Then, measured
modes amplitudes are compared to predicted modes ampli-
tudes and source depth is estimated. A study of the robust-
ness against noise of the method is made and an application
on real data gives satisfactory results.
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