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ABSTRACT

Control of prosodic characteristics is one of the most im-
portant problems in the area of speech synthesis. Fujisaki’s
model is probably the best model for pitch variations and its
inversion is suitable for being integrated within speech syn-
thesizres. This paper proposes a speech synthesis method
based on Fujisaki’s model (combined direct and inverse mod-
eling) in order to preserve natural soundness of synthesized
speech. The idea is to modify a pitch contour on the basis
of Fujisaki’s features and a reference contour. Experimental
results have shown that using constraints related to Fujisaki’s
model guarantees good natural-sounding speech synthesis.

1. INTRODUCTION

The most widely used techniques for speech synthesis are
concatenative [4]. The provide good segmental quality com-
pared to other methods, such as formant synthesis [1]. On
the other hand concatenative synthesis shows scarce control
of prosodic characteristics, even though several techniques,
such as PSOLA [4], have been developed for modifying
speech prosody.

Although concatenation and prosody-modification algo-
rithms are quite efficient, actual synthesizers cannot still pro-
vide good supra-segmental quality speech: natural-sounding
speech syntesis is still hard to obtain. Storage of large
databases helps Text-to-Speech systems to select the appro-
priate templates, but automatic systems changing the prosody
of an utterance (e.g. an assertion into a question) are still
quite difficult to implement if the objective is to preserve nat-
ural soundness.

In this scenario it is easy to understand how devise a
robust prosody model for speech-synthesis is highly desir-
able. The model must be strictly connected to physical and
linguistic structures of speech as implementation of good-
performance natural-sounding speech synthesizers cannot
leave those structures out of consideration.

We focus on analysis of pitch contours as intonation is
an acceptable description of prosody even though a more ac-
curate description should include also duration and intensity.
Fujisaki’s model [2] is one of the most manageable and pow-
erful model for prosody manipulation. It has shown a re-
markable effectiveness in describing pitch contours and its
validity has been tested on several languages [6][8]. Several
techniques have been proposed to solve its inverse problem
[71091[12][13].

In this paper we propose a method to integrate Fu-
jisaki’s model into a speech synthesizer in order to preserve
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Figure 1: Prosody model for speech synthesis: pitch contour
extracted from speech (o), pitch contour representation by
use of the prosody model (o), possible modified pitch con-
tours generated by use of the prosody model (x) with appro-
priate prosodic-features manipulations (7;).

natural-soundness of synthesized speech signals. An utter-
ance is processed in order to assume a pitch contour that best
matches, with appropriate constraints, a reference one.

2. FUJISAKI’S MODEL

H. Fujisaki and his co-workers proposed, between the 70s
and the 80s, an analytical model describing the fundamental
frequency (Fp) variations [2]. It captures the essential mecha-
nisms, involved in the speech production, that are responsible
of a particular prosodic structure. Subsequently the represen-
tation of speech prosody in terms of the model features, i.e.
the inverse problem, has been approached with various meth-
ods [7][9][12][13]. Fujisaki’s model has proven to give good
overlapping between sets of model contours and natural ones
(see Fig. 1).

2.1 The model

The model, shown in Fig. 2, assumes that the Fy contour (in a
logarithmic scale) is the superposition of two contributions:
a phrase component and an accent component, obtained by
filtering two signals. The first contribution (y,), which mod-
els the pitch baseline, accounts for speaker declination and
it is characterized by a fast rise followed by a slower fall.
The second contribution (y,), which models smaller-scale
prosodic variations, accounts for accent components. The
two components are superimposed to a constant value related
to the minimum value of speaker’s Fy to realize a particular
melodic structure. The first input signal (x,) is composed
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Figure 2: Fujisaki’s model.

by Dirac impulses, namely phrase commands, located at the
onsets of phrase activities while the second one (x,) is com-
posed by rectanglular pulses, namely accent commands. The
linear systems processing x, and x,, namely phrase control
and accent control mechanisms, are characterized by:

hy(t) = a*te u(t) (1)

which is the impulse response of the phrase control mecha-
nism, where o € [2,4] 5! is its natural angular frequency,
and

ga(t) = [1 = (1+Br)e Pu(r), @)
which is the step response of the accent control mechanism,
where 8 € [19,21] s~ ! is its natural angular frequency. The
total pitch contour is then expressed as

y(t) = In[Fy(t)] — n(Fpin) = yp(t) +a(t)

Np
= D Apihplt—tp0)+
=i

Na / ”
+ Z Aak [gll (t - ta,k) _ga(t - ta,k)] ) 3)
k=1

where F;, is the minimum value of speaker’s F ; N, and N,
are the number of phrase and accent events; 4, and ¢, ; are
the magnitude and the timing of the k-#2 phrase command;
Aaks t(;  and t:; « are the magnitude, the onset and the end of
the k-#h accent command. A non-linear system, accounting
for possible glottal effects, has been ignored as it is rather
irrelevant to our study.

2.2 The inverse problem

Integration of Fujisaki’s model knowledge in a speech syn-
thesizer requires the implementation of an automatic proce-
dure to extract prosodic events from speech in term of model
features (model inversion). Fujisaki’s model output to the
extracted features must optimally match the originary pitch
contour.

The inverse problem is approached [13] by means of a
starting procedure that guesses a first estimation of phrase
and/or accent components and of a subsequent processing
that refines the solution. A feedback that compares the orig-
inary pitch with the one obtained from the estimation allows
recursive solution refinements (see Fig. 3). First estimations
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Figure 3: Block diagram of the inverse problem.
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Figure 4: Reference scheme.

are based on high-pass filtering Fy contour [7], or on low-
pass filtering Fyy contour [9], or on differentiating Fy contour
[12], or on selecting local minima and maxima of F{ contour
[13].

3. NATURAL-SOUNDING SYNTHESIS

In this paper we focus on the problem of changing the
prosody of an utterance on the basis of a “desired” reference
prosodic contour. We would like to do so by preserving natu-
ral soundness. Direct superposition of a reference pitch con-
tour on a given speech segment generally does not produce
satisfactory synthesis. This is because modification should
be strongly anchored to linguistic events. The challenge is
to be able to do so without complicated unpacking of textual
information. We found that acting on events of Fujisaki’s
model may be sufficient to constraint pitch modification to
obtain natural-sounding speech.

The reference scheme is showed in Fig. 4. A speech sig-
nal is processed to obtain a prosody representation in a fea-
tures domain in terms of phrase and accent commands. A
matching system processes the features in order to minimize
a cost function depending on a target reference pitch contour
to obtain a synthetic pitch contour to be superimposed to the
speech signal.

We consider that both the utterance to be processed and
the reference contour present only one phrase command, so
that the analysis can be referred only to the accent compo-
nent. More specifically we consider only amplitude modifi-
cations of the accent commands.

Even though the model has been described with reference
to continuous-time domain signals, our experiments are obi-
ouvsly run on sampled signals using digital filters. The digi-
tal filters, used to simulate the phrase-control and the accent-
control mechanisms, are designed via the pulse-invariance
and the step-invariance techniques [3], respectively. This has
been a natural choice for the kind of the input sequences
assumed in the model. From here on, the discussion will
be presented with reference to discrete-time domain signals,
with obvious corresponding notation.
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3.1 Problem formulation

Let s(n) be the utterance to be processed and y(n) the pitch
contour extracted from it. Let d () be the accent component
of the reference contour, that has been previously normal-
ized in amplitude and duration with respect to y(n). Let the
estimated phrase and accent component of y(n) be

yp(n) =Ap hp(n—np) 4)

and

Na "
Ya( Z Aug [ga(n—ng) —ga(n—n, )1, (5

respectively. Then our objective is to find a set of command
amplitudes {4} ,,4;,,...,4; y,} to minimize the cost func-
tion

~

e=Y [d(n)—ya(n)*, (6)

n=1

with respect to {41,442, ...
of signal samples.
Let

,Aan, }, where L is the number

"

n)=3 A5y lgaln—n, ) —gan—n)l, (D)

then our synthetic pitch contour is obtained as

¥ (n) =yp(n) +ya(n) . (®)

Such a contour is then superimposed to the speech signal
s(n) by using a PSOLA synthesis technique [4]. The proce-
dure results in an utterance whose intonation resembles the
reference contour and whose natural soundness is generally
preserved.

3.2 Synthesis parameter calculation

Let h,(n) be the impulse response of the digital filter that
simulates the accent control mechanism, let x,, y, and d be
the column vectors whose elements are the samples of the
signals x,(n), y,(n) and d(n) respectively, and let a be the
column vector whose k-4 element is the amplitude 4, ; of
the k-t accent command. Then the problem is

a* = argm;n €. )

Consider the truncated version with M samples of the in-
finite exponentially decaying impulse response of the accent
control mechanism, and let

a(0) 0 0
ha(1) ha(0) 0
ha(2) ha(1) 0
he(M—1) ha(M—2 0
mr | Y haEM—lg o [+ (9

0 0 0
0 0 0

0 0 74(0)

then
Ya=H"x,, (11)
and
. o . T T
min ¢ = min{y,y,—2d"y,}
a Ya
= min{x'HH x,—2d"H x,}. (12)
The solution of the uncostrained problem
= (HH") 'Hd, (13)

is not suited to the problem because x7; () is costrained to be
a sequence of rectangular pulses located in correspondence
of the accent commands of y(n). To take into account for this
constraint, it is useful to consider the following expression

Z
Aq101
Zy

Aa,202 (14)

ZpN,
AaN,0N,
where z; (resp. o) is a vector of zeros (resp. ones) whose
length Ly (resp Ly)is equal to the number of samples of
»(n) between na 41 and ”a & (resp. ”a and ”a ) Therefore
H can be divided into 2 % Na submatrices

H' =(Z, H Z, H, ... Zy, Hy, ), (15
where Zj, is a matrix L X Lo; and Hy, is a matrix L x L.
From Egs. (11),(14) and (15) it follows that
Ng
Ya= Z AaxHyoy (16)
=1
and therefore the solution to the constrained problem is
a*=(PPT)"'Pqd, (17)
where
P'=(p p PN ), (18)
and
pr = Hyoy . (19)

3.3 Experiments

A software based on the described algorithm has been imple-
mented in MATLAB and tested on a corpus of 50 utterances
of continuous Italian speech partially chosen from the corpus
CLIPS [11]. The results were encouraging. From a percep-
tive point of view the synthesized speech presents the desired
intonation characteristics on 50 percent of cases, but it never
resulted in an unnutural-sounding speech. Therefore we can
say that natural-soundness is preserved by the model.

Fig. 5 shows an example of an interrogative utterance
processed to become declarative by using a pitch contour
obtained by another reference declarative utterance. It can
be observed that there is a close matching between the ref-
erence pitch contour and the pitch contour obtained by us-
ing the proposed method. Synthesis results are quite natural
sounding.

Some improvements are still to be implemented to allow
greater variability as large mismatches tend to cause critical
problems in PSOLA synthesis [4].
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(a) Speech signal to be processed. The utterance corresponds to “E’ ancora
troppo presto?” (en. “Is it still too much soon?”).
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(b) Originary interrogative pitch contour (dashed line), reference declarative
pitch contour (solid line) and matched declarative pitch contour (dotted line).

Figure 5: Example of matching the intonation of an utterance
to a reference one preserving natural-soundness of synthe-
sized speech.

4. CONCLUSIONS

The paper describes a simple method for automatic match-
ing of intonation characteristics of speech. Basing on the
Fujisaki’s model the pitch contour extracted from on utter-
ance is matched to a reference contour. The Fujisaki’s model
is used to introduce appropriate constraints for the matching
problem in order to preserve natural-soundness of the syn-
thesized speech.

The proposed technique has been used to realize a
speech synthesizer that confirms the effectiveness of Fu-
jisaki’s model in speech synthesis. Our experiments have
been based on manipulation of the magnitude of accent com-
mands. They have provided very natural-sounding synthe-
sized speech. Future works include the extension of the syn-
thesizer so that manipulation of commands timing and dura-
tion is allowed.

The results in this paper represent an important step
toward the implementation of a totally automatic analy-
sis/synthesis based on clusters learned from features analy-
sis. We are currently considering the extension of similar
modeling to other prosodic parameters such as duration and
energy profiles.
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