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ABSTRACT

An important problem in multiresolution analysis of signals
and images consists in estimating hidden random variables
(r.v.) x = {Xs},. » from observed ones y = {y} . This
is done classically in the context of Hidden Markov Trees
(HMT). In particular, a smoothing Kalman-like algorithm
has been proposed by Chou et al. in the linear Gaussian case.
In this paper we extend this algorithm to the more general
framework of Pairwise Markov Trees (PMT).

1. INTRODUCTION

Multiresolution analysis and multiscale algorithms are of in-
terest in a large variety of signal and image processing prob-
lems (see e.g. [1] and the references therein). Efficient
restoration algorithms have been developed in the context of
tree-based structures [2] [3] [4]. These algorithms estimate
the hidden r.v. x from the observed ones y, under the as-
sumption that the stochastic interactions of x and y are mod-
eled by an HMT.

On the other hand, it is well known that if (x,y) is a
classical Hidden Markov Model (HMM), then the pair (x,y)
itself is Markovian. Conversely, starting from the sole as-
sumption that (x,y) is Markovian, i.e. that (x,y) is a so-
called Pairwise Markov Model (PMM), is a more general
point of view which nevertheless enables the development
of similar restoration algorithms. More precisely, some of
the classical Bayesian restoration algorithms used in Hid-
den Markov Fields (HMF), Hidden Markov Chains (HMC)
or Hidden Markov Trees (HMT), have been generalized re-
cently to the more general frameworks of Pairwise Markov
Fields (PMF) [5], Pairwise Markov Chains (PMC) with dis-
crete [6] or continuous [7] [8] state process, and of PMT with
discrete [9] [10] or continuous [10] hidden variables.

In this paper we focus on the smoothing Kalman-like al-
gorithm of Chou et al. [3]. This algorithm is an extension to
HMT of the RTS smoother [11] derived in the HMC frame-
work, and was later on recognized as being a particular case
of Pearl’s belief propagation algorithm for Directed Acyclic
Graphs. The main aim of this paper is to extend the algorithm
of [3] in another direction, i.e. from HMT to PMT models.

This paper is organized as follows. In section 2 we briefly
recall the HMT and PMT models, and show that PMT are
more general than HMT. A general overview of our extension
to the PMT model of the algorithm of [3] is given in section
3.1, and computational details of our algorithm are derived
in sections 3.2 and 3.3.

2. HIDDEN VS. PAIRWISE MARKOV TREES

Let . be a finite set of indices, and let us consider a tree stuc-
ture with nodes indexed on .. Let us partition . in terms

of its successive generations .| ---, . So, | is made of
the root node r, ., gathers the children of node , and so on.
Each node s (apart from the root node r) has one father s~.
The set of all descendants of a node s is denoted by s™. We
assume for notational simplicity that the tree is dyadic, i.e.
that each node s (which is not in the last generation ») has
exactly two children s, and s,.

Let now x = {Xs} . and y = {ys},. o be two sets of
r.v. indexed on .. Each x; (resp. y;) belongs to IR? (resp. to
IR?). Let p(xy) (resp. p(ys)) denote the probability density
function (p.d.f.) of x, (resp. of y;) w.r.t. Lebesgue measure,
and let p(x[{yo},c5) denote the conditional p.d.f. of x;
given {yg},c5. Other p.d.f. or conditional p.d.f. of interest
are defined similarly.

The classical HMT model is widely used for modeling
p(x,y). In this model, x is a Markov Tree (MT), and con-
ditionally on x, the variables y, are independent and satisfy

P(yslx) = p(ys]xs)

n

p(x,y) =p(x) |_! [ p(xslx) x [ P(yslxs). (D)

1=2s€Y; s€S

p(x) p(ylx)

Now, let us introduce the pair z; = (Xs,ys), and let z =
{2zs},c.- A PMT model is a model in which we only as-
sume that z is a MT :

n

p(z)=p(z) |1 nyp(zslzr)- )

1

One can check easily that (1) implies (2), so any HMT is a
PMT. However, PMT are more general than HMT, because
if (2) holds, x is not necessarily a MT, as we see from the
following result :

Proposition 1 Let z be a dyadic PMT satisfying (2). Assume
that

Forallsc S\, p(xlx_,y,)=pxlx_). (3)

Then x is a MT. Conversely, assume that x is a MT, and that

Joralls € S\ S, p(zs,|2s) = p(2s,|2s), i.e. that condition-
ally on the father, the laws of the children are equal. Then
(3) holds.

Proof. Let z,.; = {ZS}seyk i<k<,» and let us define x;; and

Vi similarly. Using (2) and (3), we get

p(xl:n):/p(zl:n)dyl:n:/p(zl:nfl)[ I_Iy/p(zszs )dyS]dyl:nfl

=p (1) []pbsbe, ) =pG) [ [] pOsh, )

SESY 1=2scY
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so x is a MT. Conversely, let x and z be both MT. Then for
alls € S\ S,

. p(Zs;Zsl)p(ZSaZsz) .
P(Zsazslazsz) = (25 =

P(¥s; Ys, |XSva1 )p(Ys, Ys, |X37Xs2)

P(XSval )P(XSvaz)
P(ys|xs) .

P(xs)

P(xs-,xsl ‘xxz)

Integrating w.r.t. ys, ys, and y;,, we get

/p ys|xs;xs )p (yS|XSaXSZ)

YS |Xs

dys=1. 4)

Let pi,(ys) = P(¥s/xs, %5, = w). By assumption,

PoYs) = Po(Vs)- (5)
Using (5) and then (4), we get
P 1 pw Ys)Po(y
/ (Peo(ys) =Py (v5))? ys|xs ys|xs s
Pay (¥5)Pey (¥5) Pu(Ys)Pey (¥ )dys _o.
y5|Xs YS|Xs

So pe(ys) = pw(ys) (and similarly pw(ys) = Poy(¥s));
which proves that conditionally on xj, X, and y, are inde-
pendent. ]

Finally, let us notice that the wider generality of model
(2) w.r.t. model (1) is maybe best appreciated at the local
level, for the transition p.d.f. p(zs|z ) in (2) reads

P(zslz, ) P(Xeyslx_,y,.)

= pxslx, ¥, )p(yslxs %,y );

so an HMT is a PMT in which p(xs|x_,y ) reduces to

p(xs]x-), and p(ys|xs, %,y ) reduces to p(ys|x;).

3. COMPUTATION OF THE POSTERIOR P.D.F.
OF A GIVEN NODE

From now on we shall assume that z is a Gaussian PMT. The
aim of this section consists in computing the posterior p.d.f.
p(xs|y) for an arbitrary s € 7.

3.1 Modeling assumptions and structure of the algo-
rithm

We assume that (2) holds, and moreover that
Zs, = Fsizs + Wi, E(Wsiws];) = Qsl.; (6)

in which w = {w,} & are random vectors which are
1

SESL\
zero-mean, independent and independent of z,, and in which
Qg is positive definite (Qg > 0) for all s. We also assume
that w is Gaussian and that p(z,) ~ A47(0,Q,). As a con-
sequence, z is zero-mean and Gaussian and we set p(zs) ~

A(0,P;). All conditionnal p.d.f. related to z are also Gaus-
sian, so computing these p.d.f. amounts to computing their
parameters. Let us thus introduce the following notations :

p :{S7:§S :’ > ~ o X
O0Jo Er‘ Py‘ ‘
AS'\Z S|z

Following [3], our algorithm is essentially made of two
sweeps, one filtering sweep in the backward (fine-to-coarse)
direction and then one smoothing sweep in the forward
(coarse-to-fine) direction. More precisely, the structure of
the algorithm is a follows :

1. From p(z,) and equation (6), we compute recursively
p(zs) forall s € . via

Psl- = Qsi + FsiPstZ;; (8)

2. Fine-to-coarse sweep. Starting from {p(x|ys)},cs .
we compute recursively, in the fine-to-coarse direc-
tion, {p(Xs[ys, ¥+ )}ses, forall me {n—1,-- 1}
Since each p.d.f.  p(x|ys,y+) is computed from
{p(xsl_|ysl_,ys_++)}%:1 (see §3.2 for details), the compu-

tations of the 2"~ ! p.d.f. P(Xs|ys, ¥4+ ) of a given gen-
eration m can be performed in parallel. At the end of this
backward sweep, p(x,|y) has been computed;

3. Coarse-to-fine sweep. It remains to compute p(x,|y) for
an arbitrary s. There is a unique path {o;}?” | (with g, =r
and g, = s) relating node s to the root node r. Along
this path, the conditional law of {xq }/”; given y is
Markovian, so p(x;|y) can be computed recursively from
p(Xg,|y) and {p(xol_|x(0),,y)};7’:2. On the other hand,

we will see in section 3.3 that each p.d.f. p(x;,|xs,y)
can be computed from p(x;|y), and from p(XSi \ysl_ Yoit)

and p(z;|z,,) which have been computed previously.

We now turn to the computational details of the algo-
rithm. The backward sweep is explained in section 3.2 and
the forward sweep in section 3.3. The derivations rely on two
ingredients. Firstly, the PMT assumption plays an important
role; in particular, the following two properties of Markov
trees will prove useful in the sequel :

e (P1). Lets € ., with 1 < m < n. Conditionally on z,

{z;*} and {zs} #\{s.5++} A€ independent.

e (P2). Lets € ., with 1 <m < n. Conditionally on zj,

{zs, ’zs1++} and {z;,, zsz++} are independent.

Secondly, the algorithm also heavily relies on the Gaussian
assumption; in particular, we extensively use Propositions 6
and 7 (see the Annex), which is arguably simpler than the
approach of [3].

3.2 Fine-to-coarse sweep
Each elementary step of the backward sweep can be decom-
posed into 3 substeps :
1. backward prediction step : for i = 1,2, computation of
P(zs |YSl- Y gttt ) from p(Xsi |YS,- ¥ g+ );
2. fusion step computation of p(z|y ;)
p(ZSb’sl 7ys;r+) and P(ZS|YS2 ) ySTr );

from
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3. measurement-update  step

P(Xs]s, ys++) from P(ZS|YS++)~
These three substeps are described respectively by the fol-
lowing three propositions :

computation  of

Proposition 2 (Backward prediction step.)
(Z5|ys vys++) can be computed from P(Xs |ys 7ys++)
via the followmg recursion :

~

~ [x
_ ;|5 st
Zs\s,-,slfr = F, [ ’y;il ] ’ ©)

Ps‘sﬁ%ﬁ = Qs

F‘C‘C " _
T T
i P [EEN]a0)

Fy P,F! PS? : (1)
Qs (12)

P,—P,F/P.'F,P;.
Proof. From (P1), we have fori = 1,2,
(X5 Zs|ys, Vo) = p(xs

(P1)
= P(XS,-|ys[ays_++)P(ZS|ZS,-)-

l-|YS,~7YS_++)p(ZS|ZSiayS_++)
(13)

We first need to compute p(zs|zs,) from p(z;) and p(zs,|z;).
Using Proposition 7, (8) and Proposition 6, we get

0 P, PSFT:|
Zg,Zs.) = Zg Zs |2zg) ~ AN ’ K ’
p( l) p( ) P( z| ) ([0:| |:FS’_P5 Ps[ )

A (OPLY (F, 2,,Qy)

(14)
and so p(zs|zs’_) ~ /(fsizs[, (?25[), in which f‘S[ and Qs’_ are
given by (11) and (12). We next turn back to the computation
of (13). Using Proposition 7, we have

p(xsiazs|ysi5y&++) = p(xsi|}’s,ays_++) p(Zs|X5i,y5i)
1 1
—_———
—— ~ ~
“"V(Au\s. s,++ Psiwfﬂ A (Fsizsi"QSi)
ol
X
silsistt
~ /( f‘s_ Xsi\si,s;r+ )
i yS,‘
Prx Pxx (fx,x)T(fwy,x)T
silspst Si‘si’SjJr Si S

Fx ~x ~
o e [y

(15)
n

Tr.x

Fsi Prx Q

= S

| sl
1

from which we deduce (9) and (10).

Proposition 3 (Fusion step.) p(zs|y .. ) can be computed
from p(zs |YS1 ) ysT* ) andp(zs|y32 »y5;+ ) via :

ES‘S++ = PS‘S++[Z P;Lyli,s,**/z\s\si,s.**]’ (16)
PS‘S++ = [P;‘SII st +P;‘S12’52++ - P;] ]71- (17)

Proof. ~ We are going to compute p(zly,.) from

p(zs,ys++) = p(zs) p(ys++|zs). From (P2), P(ys++‘ZS) =
p(ys, ,ysﬁ |Z5)p(¥s, ,yserr |zs). On the other hand, due to (6),

Ys; W
{y5_++] As ZS+B [W++}

for some matrices A, and By,. Let II;, = Cov(ys,, y i+ |2s)-
Since z; and [W wsT++]T
p(YSiaystr |Zs) ~
we get

p(zs, ys++) = p(zs)
—_—

(18)

are independent, (18) yields
JV (Asizs»Hs

.)- Next, using Proposition 7,

x p()’sl RS 1 Ysy yS2++ |2s)

N (0,Py) A, Zs Hsl 0
A, o 1, |
P, Ps[AZ Afz}
~ N0, | [A, I, 0] [A, S
e [ R paarar

We can now compute p(zs |y ++ ) with the help of Proposition
6. Using the matrix inversion lemma, we get

(20)

:Ps\sJr+ =

[P;‘+Z ATI AL
i=1

P ey

from which we deduce (17). On the other hand, us-
ing (20), (21), as well as the well known identity (A +

= [Py AT A !

Sls;stt

BD'C)"'BD != A" 'B(D+CA'B)"!, we get
2 Trr—1| Ys;
Zee = Py (Y ASTLY {yﬁl])’ (22)
1= i
Z = P, L ATTL'|J) 23
Zs\si7s;r+ - Slspst RS TR | Y |2 (23)

from which we deduce (16). ]

Proposition 4 (Measurement-update step.)

P(Xs|ys, ¥ 1) can be computed from p(zs|y ..) via
the following recursions :

2s\s,ﬁ+ = §s|s++Jr Pj{f++ (Pyiy++) (ys S|S++) (24)

g : 1
P:‘is++ = Px‘:++ Pj"§++( S| ++) Py‘x 25)
Proof. Use Proposition 6. ]

3.3 Coarse-to-fine sweep

Remember from § 3.1 that the key point of the coarse-to-fine
sweep is the recursive computation of p(x;,|y) from p(x;|y).

Proposition 5 p(x; |y) can be computed from p(xs|y) via
the following recursions :

o= P [ EYRL.. e

;{Siw - i5,~|S,~-,S.++ JFJSi({ ;S] s\s s++) (27)
P.x.x O

thrs - P;C;TS,'-,S%++JS1'(|: 6‘5 O:|_P‘S|S1‘Sl++)']§;(28)
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Proof. We are going to compute p(x;,|y) via

plxyly) = [ pOalyIpte byl (29)
Now, from (P1) and (P2) one can show easily that
P(Xg X, y) = p(Xs,[%s,¥5,¥5,:¥++)- On the other hand,
p(xs[ \Zs |ys[ ,¥,++) has already been computed (see eq. (15)).
Using Proposition 6, (9) and (10), we see that
p(xsi|zsa}’sivysi++) ~ ‘/V(ﬁsi\s[,sfr +Js, (2s 7/Z\s\s[,si++)’ Csi)’

(30)
in which Jy, is given by (26), and C,;, = P~ Js.

silspstt
P JT. So
slspsit s

p(xs,. |XS7YSaYS[ays++) ~ ‘/V('!Z{S’-XS + bs,.y Cs’.)

for some matrices %i and bsl_. Coming back to (29), we see
from Proposition 7 that

p(xs,]y) / POXly) POk %5, 35, ¥ V) s
'( XsPis) (et xtby C )
~ N (R 5+ by, Cs + S P,
whence (27) and (28). [ |

3.4 Comments and remarks

e The assumption Qg > 0 in section 3.1 is a simple suffi-
cient condition ensuring that all computations are valid.
For if Qg > 0 for all s, then from (8) we get P; > 0, so
the covariance matrix of (zs,zsi) in (14) is > 0 as well,

and Qs’_ in (12) is > 0. On the other hand, from (18) we
get I > 0, so the covariance matrix in (19) is also > 0,
which in turn ensures that Ps\s.,sH >0, PS‘S++ >0 and

XX : O XX
PS‘S o > 0. Next, since Qsi > 0 and Psm++ > 0, the

covariance matrix in (15) is > 0, so the matrix Cj, in (30)

is > 0. Finally P""x = P)“xy > 0, and by induction we

see that P"‘:‘(/ > 0 for all s.

e Equations (9) to (28) still hold if we only assume that
P, > 0 for all s (with Q, and IIg possibly singular). The
proofis slightly more technical and is omitted here.

o Our algorithm inherits good properties of that of Chou et
al.. In particular, its complexity is linear in the number of
nodes, and its regular pyramidal structure (which is con-
sistent with that of the dyadic tree) yields considerable
parallelism in the computations.

e The algorithm can easily be adapted to the case where
each node s admits an arbitrary number of children v;
of course, depending on the specific tree structure, par-
allelism may no longer be ensured. All equations re-
main valid, apart from Proposition 3 which needs to be
adapted. The sums in (20) and in (22) run from 1 to vy,
so (16) and (17) become

Vg
/Z\s\ﬁ* = Ps\s+4r Z‘Psi\;-,sfr*/z\s\s-,s.**’ G
= [2ae] 7
Vs
P = | iP‘;S++——(vS4—l)P;J]*1.(32)

=

A. SOME PROPERTIES OF GAUSSIAN R.V.

The derivations of sections 3.2 and 3.3 rely heavily on the
following two properties of Gaussian r.v., which are recalled
for convenience of the reader.

by by
Proposition 6 Let p(u,,u,) ~ /([“1} 7[ L1 1,2])_

Ky 22,1 22,2
Then  p(u;ju,) ~ JV([JHZ,E”Z), with — Hy, =
My + 217225,;(“2 —Hy) and 3y, =3 | — E172227,;22,1-

Proposition 7 Let p(u,) ~ A (U, %) and p(u,|u,) ~

A (Au, +b722|1). Then
T
~ H ) A
Pl v2) /([AHHrb]’ A% %) +A3AT -
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