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ABSTRACT

An important problem in multiresolution analysis of signals
and images consists in estimating hidden random variables
(r.v.) x = {xs}s∈

� from observed ones y = {ys}s∈
� . This

is done classically in the context of Hidden Markov Trees
(HMT). In particular, a smoothing Kalman-like algorithm
has been proposed by Chou et al. in the linear Gaussian case.
In this paper we extend this algorithm to the more general
framework of Pairwise Markov Trees (PMT).

1. INTRODUCTION

Multiresolution analysis and multiscale algorithms are of in-
terest in a large variety of signal and image processing prob-
lems (see e.g. [1] and the references therein). Efficient
restoration algorithms have been developed in the context of
tree-based structures [2] [3] [4]. These algorithms estimate
the hidden r.v. x from the observed ones y, under the as-
sumption that the stochastic interactions of x and y are mod-
eled by an HMT.

On the other hand, it is well known that if (x,y) is a
classical Hidden Markov Model (HMM), then the pair (x,y)
itself is Markovian. Conversely, starting from the sole as-
sumption that (x,y) is Markovian, i.e. that (x,y) is a so-
called Pairwise Markov Model (PMM), is a more general
point of view which nevertheless enables the development
of similar restoration algorithms. More precisely, some of
the classical Bayesian restoration algorithms used in Hid-
den Markov Fields (HMF), Hidden Markov Chains (HMC)
or Hidden Markov Trees (HMT), have been generalized re-
cently to the more general frameworks of Pairwise Markov
Fields (PMF) [5], Pairwise Markov Chains (PMC) with dis-
crete [6] or continuous [7] [8] state process, and of PMT with
discrete [9] [10] or continuous [10] hidden variables.

In this paper we focus on the smoothing Kalman-like al-
gorithm of Chou et al. [3]. This algorithm is an extension to
HMT of the RTS smoother [11] derived in the HMC frame-
work, and was later on recognized as being a particular case
of Pearl’s belief propagation algorithm for Directed Acyclic
Graphs. The main aim of this paper is to extend the algorithm
of [3] in another direction, i.e. from HMT to PMT models.

This paper is organized as follows. In section 2 we briefly
recall the HMT and PMT models, and show that PMT are
more general than HMT. A general overview of our extension
to the PMT model of the algorithm of [3] is given in section
3.1, and computational details of our algorithm are derived
in sections 3.2 and 3.3.

2. HIDDEN VS. PAIRWISE MARKOV TREES

Let
�

be a finite set of indices, and let us consider a tree stuc-
ture with nodes indexed on

�
. Let us partition

�
in terms

of its successive generations
�

1 · · · ,
�

n. So,
�

1 is made of
the root node r,

�
2 gathers the children of node r, and so on.

Each node s (apart from the root node r) has one father s−.
The set of all descendants of a node s is denoted by s++. We
assume for notational simplicity that the tree is dyadic, i.e.
that each node s (which is not in the last generation n) has
exactly two children s1 and s2.

Let now x = {xs}s∈
� and y = {ys}s∈

� be two sets of
r.v. indexed on

�
. Each xs (resp. ys) belongs to IRp (resp. to

IRq). Let p(xs) (resp. p(ys)) denote the probability density
function (p.d.f.) of xs (resp. of ys) w.r.t. Lebesgue measure,
and let p(xs|{yσ}σ∈Σ) denote the conditional p.d.f. of xs
given {yσ}σ∈Σ. Other p.d.f. or conditional p.d.f. of interest
are defined similarly.

The classical HMT model is widely used for modeling
p(x,y). In this model, x is a Markov Tree (MT), and con-
ditionally on x, the variables ys are independent and satisfy
p(ys|x) = p(ys|xs) :

p(x,y) = p(xr)
n

∏
i=2

∏
s∈

�
i

p(xs|xs−)

︸ ︷︷ ︸
p(x)

× ∏
s∈

� p(ys|xs)

︸ ︷︷ ︸
p(y|x)

. (1)

Now, let us introduce the pair zs = (xs,ys), and let z =
{zs}s∈

� . A PMT model is a model in which we only as-
sume that z is a MT :

p(z) = p(zr)
n

∏
i=2

∏
s∈

�
i

p(zs|zs−). (2)

One can check easily that (1) implies (2), so any HMT is a
PMT. However, PMT are more general than HMT, because
if (2) holds, x is not necessarily a MT, as we see from the
following result :

Proposition 1 Let z be a dyadic PMT satisfying (2). Assume
that

For all s ∈
�

\
�

1, p(xs|xs− ,ys−) = p(xs|xs−). (3)

Then x is a MT. Conversely, assume that x is a MT, and that
for all s ∈

�
\

�
n, p(zs1

|zs) = p(zs2
|zs), i.e. that condition-

ally on the father, the laws of the children are equal. Then
(3) holds.

Proof. Let zi: j = {zs}s∈
�

k,i≤k≤ j, and let us define xi: j and
yi: j similarly. Using (2) and (3), we get

p(x1:n)=

∫
p(z1:n)dy1:n=

∫
p(z1:n−1)[ ∏

s∈
�

n

∫
p(zs|zs−)dys]dy1:n−1

= p(x1:n−1)∏
s∈

�
n

p(xs|xs−) = p(xr)
n

∏
i=2

∏
s∈

�
i

p(xs|xs−),
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so x is a MT. Conversely, let x and z be both MT. Then for
all s ∈

�
\

�
n,

p(zs,zs1
,zs2

) =
p(zs,zs1

)p(zs,zs2
)

p(zs)
=

p(ys,ys1
|xs,xs1

)p(ys,ys2
|xs,xs2

)

p(ys|xs)
×

p(xs,xs1
)p(xs,xs2

)

p(xs)︸ ︷︷ ︸
p(xs,xs1

,xs2
)

.

Integrating w.r.t. ys, ys1
and ys2

, we get

∫ p(ys|xs,xs1
)p(ys|xs,xs2

)

p(ys|xs)
dys = 1. (4)

Let pi
ω(ys) = p(ys|xs,xsi

= ω). By assumption,

p1
ω(ys) = p2

ω(ys). (5)

Using (5) and then (4), we get

∫
(p1

ω(ys)− p1
ω ′(ys))

2 1
p(ys|xs)

dys =

∫
p1

ω(ys)p2
ω(ys)

p(ys|xs)
dys

︸ ︷︷ ︸
1

+

∫ p1
ω ′(ys)p2

ω ′(ys)

p(ys|xs)
dys

︸ ︷︷ ︸
1

−2
∫ p1

ω(ys)p2
ω ′(ys)

p(ys|xs)
dys

︸ ︷︷ ︸
1

= 0.

So p1
ω(ys) = p1

ω ′(ys) (and similarly p2
ω(ys) = p2

ω ′(ys)),
which proves that conditionally on xs, xsi

and ys are inde-
pendent.

Finally, let us notice that the wider generality of model
(2) w.r.t. model (1) is maybe best appreciated at the local
level, for the transition p.d.f. p(zs|zs−) in (2) reads

p(zs|zs−) = p(xs,ys|xs− ,ys−)

= p(xs|xs− ,ys−)p(ys|xs,xs− ,ys−);

so an HMT is a PMT in which p(xs|xs− ,ys−) reduces to
p(xs|xs−), and p(ys|xs,xs− ,ys−) reduces to p(ys|xs).

3. COMPUTATION OF THE POSTERIOR P.D.F.
OF A GIVEN NODE

From now on we shall assume that z is a Gaussian PMT. The
aim of this section consists in computing the posterior p.d.f.
p(xs|y) for an arbitrary s ∈

�
.

3.1 Modeling assumptions and structure of the algo-
rithm

We assume that (2) holds, and moreover that

zsi
=Fsi

zs +wsi
, E(wsi

wT
si
) = Qsi

, (6)

in which w = {ws}s∈
�

\
�

1
are random vectors which are

zero-mean, independent and independent of zr, and in which
Qs is positive definite (Qs > 0) for all s. We also assume
that w is Gaussian and that p(zr) ∼ � (0,Qr). As a con-
sequence, z is zero-mean and Gaussian and we set p(zs) ∼

� (0,Ps). All conditionnal p.d.f. related to z are also Gaus-
sian, so computing these p.d.f. amounts to computing their
parameters. Let us thus introduce the following notations :

p(xs,ys︸ ︷︷ ︸
zs

|{yσ}σ∈Σ) ∼ � (

[
x̂s|Σ
ŷs|Σ

]

︸ ︷︷ ︸
ẑs|Σ

,

[
Px,x

s|Σ Px,y
s|Σ

Py,x
s|Σ

Py,y
s|Σ

]

︸ ︷︷ ︸
Ps|Σ

). (7)

Following [3], our algorithm is essentially made of two
sweeps, one filtering sweep in the backward (fine-to-coarse)
direction and then one smoothing sweep in the forward
(coarse-to-fine) direction. More precisely, the structure of
the algorithm is a follows :
1. From p(zr) and equation (6), we compute recursively

p(zs) for all s ∈
�

via

Psi
= Qsi

+Fsi
PsF

T
si

; (8)

2. Fine-to-coarse sweep. Starting from {p(xs|ys)}s∈
�

n
,

we compute recursively, in the fine-to-coarse direc-
tion, {p(xs|ys,ys++)}s∈

�
m

for all m ∈ {n − 1, · · · ,1}.
Since each p.d.f. p(xs|ys,ys++) is computed from
{p(xsi

|ysi
,ys++

i
)}2

i=1 (see §3.2 for details), the compu-

tations of the 2m−1 p.d.f. p(xs|ys,ys++) of a given gen-
eration m can be performed in parallel. At the end of this
backward sweep, p(xr|y) has been computed;

3. Coarse-to-fine sweep. It remains to compute p(xs|y) for
an arbitrary s. There is a unique path {σi}

m
i=1 (with σ1 = r

and σm = s) relating node s to the root node r. Along
this path, the conditional law of {xσi

}m
i=1 given y is

Markovian, so p(xs|y) can be computed recursively from
p(xσ1

|y) and {p(xσi
|x

(σi)
− ,y)}m

i=2. On the other hand,

we will see in section 3.3 that each p.d.f. p(xsi
|xs,y)

can be computed from p(xs|y), and from p(xsi
|ysi

,ys++
i

)

and p(zs|zsi
) which have been computed previously.

We now turn to the computational details of the algo-
rithm. The backward sweep is explained in section 3.2 and
the forward sweep in section 3.3. The derivations rely on two
ingredients. Firstly, the PMT assumption plays an important
role; in particular, the following two properties of Markov
trees will prove useful in the sequel :
• (P1). Let s ∈

�
m with 1 < m < n. Conditionally on zs,

{z++
s } and {zσ} �

\{s,s++}
are independent.

• (P2). Let s ∈
�

m with 1 ≤ m < n. Conditionally on zs,
{zs1

,zs++
1

} and {zs2
,zs++

2
} are independent.

Secondly, the algorithm also heavily relies on the Gaussian
assumption; in particular, we extensively use Propositions 6
and 7 (see the Annex), which is arguably simpler than the
approach of [3].

3.2 Fine-to-coarse sweep

Each elementary step of the backward sweep can be decom-
posed into 3 substeps :
1. backward prediction step : for i = 1,2, computation of

p(zs|ysi
,ys++

i
) from p(xsi

|ysi
,ys++

i
);

2. fusion step : computation of p(zs|ys++) from
p(zs|ys1

,ys++
1

) and p(zs|ys2
,ys++

2
);
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3. measurement-update step : computation of
p(xs|ys,ys++) from p(zs|ys++).

These three substeps are described respectively by the fol-
lowing three propositions :

Proposition 2 (Backward prediction step.)
p(zs|ysi

,ys++
i

) can be computed from p(xsi
|ysi

,ys++
i

)

via the following recursion :

ẑs|si,s
++
i

= F̃si

[
x̂si|si,s

++
i

ysi

]
, (9)

Ps|si,s
++
i

= Q̃si
+

[
F̃x,x

si

F̃y,x
si

]
Px,x

si|si,s
++
i

[
(F̃x,x

si
)T (F̃y,x

si
)T

]
,(10)

F̃si
= PsF

T
si
P−1

si
, (11)

Q̃si
= Ps −PsF

T
si
P−1

si
Fsi

Ps. (12)

Proof. From (P1), we have for i = 1,2,

p(xsi
,zs|ysi

,ys++
i

) = p(xsi
|ysi

,ys++
i

)p(zs|zsi
,ys++

i
)

(P1)
= p(xsi

|ysi
,ys++

i
)p(zs|zsi

). (13)

We first need to compute p(zs|zsi
) from p(zs) and p(zsi

|zs).
Using Proposition 7, (8) and Proposition 6, we get

p(zs,zsi
) = p(zs)︸ ︷︷ ︸�

(0,Ps)

p(zsi
|zs)︸ ︷︷ ︸�

(Fsi
zs,Qsi

)

∼ � (

[
0
0

]
,

[
Ps PsF

T
si

Fsi
Ps Psi

]
),

(14)
and so p(zs|zsi

) ∼ � (F̃si
zsi

,Q̃si
), in which F̃si

and Q̃si
are

given by (11) and (12). We next turn back to the computation
of (13). Using Proposition 7, we have

p(xsi
,zs|ysi

,ys++
i

) = p(xsi
|ysi

,ys++
i

)
︸ ︷︷ ︸�
(x̂

si|si,s
++
i

,Px,x
si|si ,s

++
i

)

p(zs|xsi
,ysi

)
︸ ︷︷ ︸�

(F̃si
zsi

,Q̃si
)

∼ � (




x̂si|si,s
++
i

F̃si

[
x̂si|si,s

++
i

ysi

]

 ,




Px,x
si|si,s

++
i

Px,x
si|si,s

++
i

[
(F̃x,x

si
)T (F̃y,x

si
)T

]

[
F̃x,x

si

F̃y,x
si

]
Px,x

si|si,s
++
i

Q̃si
+

[
F̃x,x

si

F̃y,x
si

]
Px,x

si|si,s
++
i

[
(F̃x,x

si
)T (F̃y,x

si
)T

]


),

(15)
from which we deduce (9) and (10).

Proposition 3 (Fusion step.) p(zs|ys++) can be computed
from p(zs|ys1

,ys++
1

) and p(zs|ys2
,ys++

2
) via :

ẑs|s++ = Ps|s++ [
2

∑
i=1

P−1
s|si,s

++
i

ẑs|si,s
++
i

], (16)

Ps|s++ = [ P−1
s|s1,s++

1
+P−1

s|s2,s
++
2

−P−1
s ]−1

. (17)

Proof. We are going to compute p(zs|ys++) from
p(zs,ys++) = p(zs) p(ys++ |zs). From (P2), p(ys++ |zs) =
p(ys1

,ys++
1

|zs)p(ys2
,ys++

2
|zs). On the other hand, due to (6),

[
ysi

ys++
i

]
= Asi

zs +Bsi

[
wsi

ws++
i

]
(18)

for some matrices Asi
and Bsi

. Let Πsi
= Cov(ysi

,ys++
i

|zs).

Since zs and [wT
si
,wT

s++
i

]T are independent, (18) yields

p(ysi
,ys++

i
|zs)∼ � (Asi

zs,Πsi
). Next, using Proposition 7,

we get

p(zs,ys++) = p(zs)︸ ︷︷ ︸�
(0,Ps)

× p(ys1
,ys++

1
,ys2

,ys++
2

|zs)
︸ ︷︷ ︸

�
(

[
As1

zs

As2
zs

]
,

[
Πs1

0

0 Πs2

]
)

∼ � (0,




Ps Ps[A
T
s1
AT

s2
][

As1
As2

]
Ps

[
Πs1

0

0 Πs2

]
+

[
As1
As2

]
Ps[A

T
s1
AT

s2
]


).

(19)
We can now compute p(zs|ys++) with the help of Proposition
6. Using the matrix inversion lemma, we get

Ps|s++ = [P−1
s +

2

∑
i=1

AT
si
Π−1

si
Asi

]−1
, (20)

Ps|si,s
++
i

= [P−1
s +AT

si
Π−1

si
Asi

]−1
, (21)

from which we deduce (17). On the other hand, us-
ing (20), (21), as well as the well known identity (A +
BD−1C)−1BD−1 = A−1B(D+CA−1B)−1

, we get

ẑs|s++ = Ps|s++(
2

∑
i=1

AT
si
Π−1

si

[
ysi

ys++
i

]
), (22)

ẑs|si,s
++
i

= Ps|si,s
++
i

AT
si
Π−1

si

[
ysi

ys++
i

]
, (23)

from which we deduce (16).

Proposition 4 (Measurement-update step.)
p(xs|ys,ys++) can be computed from p(zs|ys++) via
the following recursions :

x̂s|s,s++ = x̂s|s+++Px,y
s|s++(Py,y

s|s++)
−1(ys− ŷs|s++) (24)

Px,x
s|s,s++ = Px,x

s|s++−Px,y
s|s++(Py,y

s|s++)−1Py,x
s|s++ . (25)

Proof. Use Proposition 6.

3.3 Coarse-to-fine sweep

Remember from § 3.1 that the key point of the coarse-to-fine
sweep is the recursive computation of p(xsi

|y) from p(xs|y).

Proposition 5 p(xsi
|y) can be computed from p(xs|y) via

the following recursions :

Jsi
= Px,x

si|si,s
++
i

[
(F̃x,x

si
)T (F̃y,x

si
)T

]
P−1

s|si,s
++
i

, (26)

x̂si|S
= x̂si|si,s

++
i

+Jsi
(

[
x̂s|S
ys

]
− ẑs|si,s

++
i

), (27)

Px,x
si|S

= Px,x
si|si,s

++
i

+Jsi
(

[
Px,x

s|S
0

0 0

]
−Ps|si,s

++
i

)JT
si
.(28)
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Proof. We are going to compute p(xsi
|y) via

p(xsi
|y) =

∫
p(xs|y)p(xsi

|xs,y)dxs. (29)

Now, from (P1) and (P2) one can show easily that
p(xsi

|xs,y) = p(xsi
|xs,ys,ysi

,ys++
i

). On the other hand,

p(xsi
,zs|ysi

,ys++
i

) has already been computed (see eq. (15)).

Using Proposition 6, (9) and (10), we see that

p(xsi
|zs,ysi

,ys++
i

) ∼ � (x̂si|si,s
++
i

+Jsi
(zs − ẑs|si,s

++
i

),Csi
),

(30)
in which Jsi

is given by (26), and Csi
= Px,x

si|si,s
++
i

− Jsi

Ps|si,s
++
i

JT
si
. So

p(xsi
|xs,ys,ysi

,ys++
i

) ∼ � ( � si
xs +bsi

,Csi
)

for some matrices � si
and bsi

. Coming back to (29), we see
from Proposition 7 that

p(xsi
|y) =

∫
p(xs|y)︸ ︷︷ ︸�
(x̂s|S,Px,x

s|S
)

p(xsi
|xs,ys,ysi

,ys++
i

)
︸ ︷︷ ︸�

( � si
xs+bsi

,Csi
)

dxs

∼ � ( � si
x̂s|S +bsi

,Csi
+ � si

Px,x
s|S

� T
si

),

whence (27) and (28).

3.4 Comments and remarks

• The assumption Qs > 0 in section 3.1 is a simple suffi-
cient condition ensuring that all computations are valid.
For if Qs > 0 for all s, then from (8) we get Ps > 0, so
the covariance matrix of (zs,zsi

) in (14) is > 0 as well,

and Q̃si
in (12) is > 0. On the other hand, from (18) we

get Πs > 0, so the covariance matrix in (19) is also > 0,
which in turn ensures that Ps|si,s

++
i

> 0, Ps|s++ > 0 and

Px,x
s|s,s++ > 0. Next, since Q̃si

> 0 and Px,x
s|s,s++ > 0, the

covariance matrix in (15) is > 0, so the matrix Csi
in (30)

is > 0. Finally Px,x
r|r,r++ = Px,x

r|
� > 0, and by induction we

see that Px,x
s|

� > 0 for all s.

• Equations (9) to (28) still hold if we only assume that
Ps > 0 for all s (with Qs and Πs possibly singular). The
proof is slightly more technical and is omitted here.

• Our algorithm inherits good properties of that of Chou et
al.. In particular, its complexity is linear in the number of
nodes, and its regular pyramidal structure (which is con-
sistent with that of the dyadic tree) yields considerable
parallelism in the computations.

• The algorithm can easily be adapted to the case where
each node s admits an arbitrary number of children νs;
of course, depending on the specific tree structure, par-
allelism may no longer be ensured. All equations re-
main valid, apart from Proposition 3 which needs to be
adapted. The sums in (20) and in (22) run from 1 to νs,
so (16) and (17) become

ẑs|s++ = Ps|s++

νs

∑
i=1

P−1
s|si,s

++
i

ẑs|si,s
++
i

, (31)

Ps|s++ = [
νs

∑
i=1

P−1
s|si,s

++
i

− (νs −1)P−1
s ]−1

. (32)

A. SOME PROPERTIES OF GAUSSIAN R.V.

The derivations of sections 3.2 and 3.3 rely heavily on the
following two properties of Gaussian r.v., which are recalled
for convenience of the reader.

Proposition 6 Let p(u1,u2) ∼ � (

[
µ1
µ2

]
,

[
Σ1,1 Σ1,2
Σ2,1 Σ2,2

]
).

Then p(u1|u2) ∼ � (µ1|2,Σ1|2), with µ1|2 =

µ1 +Σ1,2Σ
−1
2,2(u2 −µ2) and Σ1|2 = Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1.

Proposition 7 Let p(u1) ∼ � (µ1,Σ1) and p(u2|u1) ∼
� (Au1 +b,Σ2|1). Then

p(u1,u2) ∼ � (

[
µ1

Aµ1 +b

]
,

[
Σ1 Σ1A

T

AΣ1 Σ2|1 +AΣ1A
T

]
).
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