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ABSTRACT

In this paper, a variable step size pre-whitened sign algorithm
with a quantized normalizing factor is proposed and applied
for acoustic echo cancellation. The normalizing factor, intro-
duced in adaptive algorithms, makes filter insensitive to vari-
ations in filter input power. The Quantization of this factor to
the nearest power of two, leads to a low implementation cost.
Furthermore, the concept of input pre-whitening is used to
drive the adaptive filter, yielding to a faster convergence rate.
To make the acoustic echo canceller robust, a new way of
varying the step size is proposed. The main idea of varying
the step size is very simple and depends on the state of the
algorithm: transient state, steady state, or “double talk” state.
It was finding that it improves significantly the ability of the
algorithm to tackle the problem of double talk presence, and
contributes in increasing the convergence rate by maintain-
ing a good steady state performance. Simulation results are
presented to support the proposed algorithm.

1. INTRODUCTION

The acoustic echo is due to the feedback of the far-end
speaker’s voice through the loudspeaker-microphone path.
Teleconferencing systems, hands-free telecommunication
terminals, and voice over IP systems employ acoustic echo
cancellers to reduce such echo. These systems are based on
adaptive filtering principle. Since the echo path is character-
ized by a long impulse response, fast convergence and robust
algorithms are needed. This in turn leads to sophisticated
systems and high computational complexity (see [1] for ex-
ample).

Since the input speech signal to an acoustic echo can-
celler is non-stationary in nature, normalized versions of
adaptive algorithms are used in order to track signal varia-
tions. However, supplementary multiplication and division
operations are required to accomplish this normalization. In
this paper, we propose to normalize the sign algorithm. In
this case, the normalization factor is computed only by using
addition. Furthermore, we quantize the normalization factor
to the nearest power of two. The division operation is then
assimilated to a simple shifting operation.

The signed adaptive algorithms are mainly proposed in
order to reduce complexity. However, they suffer from slow
convergence. In this paper, we aim improving sign algo-
rithms performance by using pre-whitening concept. In fact,
as for stochastic gradient adaptive algorithms, input corre-
lation degrades sign algorithm performances. Hence, pre-
whitened sign algorithm increases the convergence rate [2].

The pre-whitener is also driven by an adaptive algorithm
because of the non stationarity of the input speech signal. It
is common to use the Normalized Least Mean Square Algo-
rithm (NLMS) [3]. This in turn leads to computational com-
plexity increase. We propose to overcome this drawback by
using sign-based pre-whitener.

To ensure a good trade-off between fast convergence rate
and stability during double talk, a variable step size is used.
Basically we improve the idea of the Dual Sign Algorithm
(DSA)[4] by using three step sizes [5], depending on the
state of the algorithm. We define three states: transient state,
steady state, and “double talk” state. The switching rules be-
tween step sizes depend on the previous state and employ
some kind of hysteresis to ensure algorithm stability and ef-
fectiveness.

2. MOTIVATION
2.1 Background

The classical method used for acoustic echo cancellation is
based on adaptive identification of the impulse response F' of
the echo path. The echo canceller generates an echo replica
(k) by filtering the speech input x(k) by an adaptive filter
H (k). This replica is subtracted from the microphone signal
y(k) yielding to the near-end signal estimation e(k), which is
used to control adaptively the filter H (k). The echo canceller
can be resumed in the following equation:

y(k) =" FTX(k)+n(k)
y(k) = H(k)T)f\(k) (1)
e(k) = y(k) —y(k)

H(k+1) = H(k)+ p(k) @(e(k)) ¢ (X (k)

Where n(k) represents the sum of the noise and the near-
end speech, X (k) = [x(k),x(k—1),---x(k— L+ 1)]” is the
observation vector of the input signal, L is the system impulse
response length, (k) is a step size, @(e(k)) and Y (X (k) are
two functions characterizing the algorithm.

In this paper, we focus more on the family of normalized
algorithms [6]. In this case, the step size is given by:

. u
p(k) = VZCET (2)

where L is a positive step size, [ is a regularization parame-
ter, and ./ (k) is a normalization factor.

From equations 1 and 2, we can derive different well
known algorithms:
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L if gle(k)) = x(K), WX(K) = X(K) and (k) —
X (k)T X(k), the algorithm becomes the well known Nor-
malized LMS algorithm.

2. if @(e(k)) = e(k), Y(X(k)) = sign(X(k)) and A" (k) =
-1

|x(k —i)|, the algorithm becomes the Nagumo and

Il\Toda algorithm (NNA)[7].
5. if gle(k) = sign(e(h)). YOX(K)) = X(6) and 4 () =

|x(k — )], the algorithm becomes the normalized sign
=
algorithm [8].

For highly correlated input signal, adaptive filters have a
slow rate of convergence. In the next section we present our
motivation to use the input pre-whitening type algorithm.

2.2 Pre-whitened Input type algorithms

It is well known that stochastic gradient adaptive filters per-
form best when operating on uncorrelated input signals [3].
In a previous work, this result was generalized for dual sign
algorithm [2]. In this section, we point out the effect of input
correlation on the rate of convergence of sign algorithm. We
present in Figure 1 the evolution of the Mean Square Devia-
tion MSD(k) versus iteration number :

MSD(k)= (H(k) ~ F)" (H(k) ~ F). 3)

We considered the following case: the input is a first order
autoregressive process x(k) = px(k — 1) + g(k), where g(k)
is a Gaussian white noise. We have chosen three values of
p, namely, p =0, p = 0.5 and p = 0.9. The system impulse
response is an acoustic response of a visioconference room
truncated to L = 512 (for a sampling frequency of 16Khz).
The additive noise is of power P, = 0.1. Figure 1 shows
that, for the same steady state, the convergence rate degrades
when the input correlation increases considerably. However,
the convergence rate for weakly correlated input(p = 0.5) are
close to that of white input.

We may conclude that signal pre-whitening approach can
then be applied in order to enhance the convergence rate of
highly correlated input such as speech, and this can be done
without the need of employing a high order predictor. In
fact, low correlated inputs permits quasi-equivalent quality
than white inputs.

For each kind of sign algorithm (sign, sign-sign, normal-
ized sign,...), different solutions, inspired from LMS based
algorithms, are possible : pre-whitening only input, pre-
whitening input and filtering the error using the same pre-
whitener,...

In a previous work, we investigate the pre-whitened sign
concept. We validate it by both theoretical and simulation
approaches for Dual Sign Algorithm (DSA) when only the
pre-whitened input drives the adaptive algorithm [2]. In this
work, we propose to develop a variable step size filtered sign
algorithm tailored for acoustic echo cancellation. One main
advantage is to maintain low the computational complexity.
More precisely, both adaptive filter used for system identi-
fication and adaptive predictor used for input pre-whitening
are based on sign algorithm.

MSD (dB)

= L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iteration number

Figure 1: Sign algorithm performance with white and corre-
lated inputs.

3. THE QUANTIZED NORMALIZING FACTOR
FOR NORMALIZED ADAPTIVE ALGORITHMS

3.1 Basicidea

Since the normalizing factor introduces at least one supple-
mentary division, we propose to reduce this complexity by
quantizing this factor to the nearest power of two. The quan-
tity 4" (k)+ B in the expression of [1(k) given in the equation
2, can be replaced by:

O(N (k) + B) = 2b — 2tmilloga (¥ (W) +B)], @

where Int is the operator which rounds to the nearest integer.

This operation is very cheap in terms of hardware imple-
mentation, and implies also the use of low bit width reso-
lution to compute the normalization factor .4 (k), which re-
duces the cost of multiplication, if any multiplication is used
in A (k).

To illustrate the effect of quantizing the normalizing fac-
tor on the performance of the NLMS and the NNA, we have
considered the following case: the input is a second order au-
toregressive process x(k) = 1.4x(k—1)—0.45x(k—2) +g(k),
where g(k) is a Gaussian white noise. The system impulse
response has a length L = 64. The additive noise is of power
B, =0.001.

Figure 2 depicts the evolution of the MSD versus iteration
number for the NLMS, NNA and their quantizing normaliz-
ing factor version, for =271, B =276. It shows that, quan-
tizing the normalizing factor does not affect considerably the
performance of the algorithm.

3.2 The Quantized Normalizing factor Sign Algorithm
(QNSA) applied for input pre-whitening

To obtain a system operating with quasi-white inputs, we can
use an input pre-whitener. Its output x/ (k) is described as
follows : .

x! (k) = x(k) = P(k) X (k- 1), (5)
where P(k) is the adaptive predictor of length Lp and X (k —
1) = [x(k—1),x(k—2),...,x(k—Lp)]" is the input observa-
tion vector.

Usually, an adaptive predictor is used with speech sig-
nals, it is classically driven by Normalized Least Mean
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Figure 2: Effect of Quantizing the Normalizing factor on the
performance of the adaptive algorithm

Square Algorithm (NLMS). In this paper, we’ll investigate
the use of normalized sign-based adaptive predictor. The
proposed predictor is driven by the Quantized Factor Nor-
malized Sign Algorithm (QNSA), and it is described as fol-
lows:

ppsign (x/ (k)

L,
Q(__ZlIX(ki)JrB)

where Up is the pre-whitener step size.

In order to validate such proposed idea, we have applied
the adaptive predictor when the input is a speech signal sam-
pled at 16kHz. The measure the performance of the predic-
tor is evaluated through the first order correlation factor of
the pre-whitened signal x/ (k). This correlation factor is esti-
mated as follows :

P(k+1)=P(k)+ X(k—1), (6)

Cor(k) = oy (k1) + (1 — ) (B (k1) *

Py(k) = aPys(k—1)+ (1 —a)x/ (k)?

where d is the forgetting factor chosen equal to a = 0.995.
In figure 3 we report the evolution of p;(k), when the
predictor is driven by the NSA, QNSA and the NLMS algo-
rithms. The step size is chosen to be the same for the three
algorithms and it is equal to pp = 272. The regularization
parameter is chosen equal to 3 = 1. From this figure, we
can note that the performances of NSA and QNSA are very
close, and in some situation it outperforms the NLMS.

4. THE VARIABLE STEP SIZE-QUANTIZED
NORMALIZING FACTOR PRE-WHITENED SIGN
ALGORITHM (VSS-QN-PSA)

4.1 The proposed algorithm

Since, we aim the application of acoustic echo cancellation,
the step size is chosen to be varying according to the amount

First order correlation factor for the pre-whitened signal

— QNSA
o NLMS

L L L L L L L L L
0] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Iteration number

Figure 3: Evolution of the first order correlation factor of
the pre-whitened signal x/ (k) using NSA, QNSA and NLMS
algorithms.

of the echo. The proposed algorithm is the result of the ideas
presented in the previous sections, and it is resumed as fol-
lows:

H(k) Sign (e(k))

H(k+1)= H(k)+—7— X7 (k)
Q(X Ixf(ki)+Bh>
i=0
(k)= x(k)—P(k)TX(k—1) :
Plk+1)= P(k)+ ‘L‘:Sig“(xf(k)) X(k—1)
Q<A_ Ix(ki)|+l3p>

®)
The three-state step size [(k) € { s, tn, Uy} is chosen
according to the rules resumed in tablel. In this table, the
time parameter D(k) measures the hangover that we should
apply, the set of parameters {1;},i = 0,..,5 are considered
as thresholds for comparison between the amount of the far-
end speech M, (k) (which yields to echo) and the amount of
the error signal M, (k) composed of additive noise, residual
echo and near-end speech (if it exists). M, (k) and M, (k) are
evaluated in a recursive manner :

M. (k) = YeM(k— 1)+ (1 - y.) [e(k)]
My (k) = yeMy (k—1)4) + (1 = &) [x(k) |,

where ¥, and Y, are forgetting factors chosen equal to ¥, =
Y. = 0.996.

The proposed decision rule depends on three parameters:
the previous step size, time parameter D(k), and the error
magnitude compared to the magnitude of the far-end signal.
In these rules we prohibit the transition from slow adapta-
tion (double talk phase) to fast adaptation (large echo), in
order to avoid abrupt adaptation change. Furthermore, when
switching from slow adaptation state to medium adaptation
state, we allow a hangover time to switch again from medium
adaptation to fast adaptation.
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Table 1: Step-sizes soft-switching rules

[ pE=1) ] conditions [IIGH D(k)
U 11 M, (k) < M (k) < TyMy (k) i D(k—1)
and D(k—1) =0 ms
Hm Me(k) > T4Mx(k) Us D(k — 1)
and D(k—1) =0 ms
U D> 0ms [T D(k—1)
—0.0625 ms
Uy M, (k) < ToMy (k) [T 0 ms
My Me(k) > TsM (k) Hs D(k—1)
Us M, (k) < 13 My (k) [T 20 ms
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Figure 4: Variation of the step size

4.2 Simulation results

We carry out the following experiments : the system impulse
response is an acoustic response of a room truncated to L =
256 (for a sampling frequency of 16 Khz). The microphone
signal is composed of periods of only-echo and double talk.
We consider the case of one-tap predictor. The step sizes
are adjusted in order to insure a good trade-off between fast
convergence rate and robustness during double talk.

In figure 4, we plot the double talk signal (curve 1), the

(k)

variation of step sizes (curve 2), expressed in term of ——=
m
and the variation of error magnitude compared to that of far-
M, (k .
el ) This fig-
. o MR
ure shows that during algorithm initialization, the step size is

moderate, it becomes high during only-echo intervals. When
double talk occurs, the step size switches to the low value.

end signal (curve 3), expressed in term of

M, (k
When (k) decreases, even it is double talk (low near-end
M (k)

and low echo importance), the step sizes becomes moderate.
We can conclude that our algorithm tracks near-end and far-
end importance and adjust the step size according to that fact.

In figure 5, we report the performance of the adaptive
filter through the evolution of the MSD. We compared the
performance of the proposed algorithm to the NSA and the

only-echo double talk only-echo

Dt TP Trme~o

MSD (dB)

— VSS-QN-PSA

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration number x 10

Figure 5: Performance of the proposed algorithm

normalized filtered dual sign algorithm (N-FDSA). This fig-
ure shows that the proposed (VSS-QN-PSA) algorithm ac-
celerates the convergence rate while remaining stable during
double talk.

5. CONCLUSION

With the use of the normalized sign algorithm, the introduc-
tion of pre-whitening input to it, the association of a sim-
ple predictor algorithm, the quantization of the normalization
factor, and the definition of a new way of varying the step
size, we have proposed a fast and robust low implementa-
tion complexity adaptive algorithm, which out-performs the
classical ones in the acoustic echo cancellation field.
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