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ABSTRACT
The natural characteristics of image signals and the statistics of
measurement noise are decisive for designing optimal filter sets and
optimal estimation methods in signal processing. Astonishingly,
this principle has so far only partially found its way into the field
of image sequence processing. We show how a Wiener-type MMSE
optimization criterion for the resulting image signal, based on a sim-
ple covariance model of images or image sequences provides direct
and intelligible solution for various, apparently different problems,
such as error concealment, or adaption of filters to signal and noise
statistics.

1. INTRODUCTION

Wiener filtering [1] is often considered to be computationally ex-
pensive, somehow tied to signal processing in the Fourier or DFT
domain, and more or less exhausted with proliferating lowpass fil-
ters that suppress noise in image on the cost of obtaining unsharp
edges. In contrast to these (possibly slightly exaggerated) preju-
dices, Norbert Wiener’s theory of optimum linear filters provides
an overwhelming richness of useful and moreover elegant solutions
to many current problems of image and video sequence processing.
Almost everything to be found in this paper is a direct consequence
of Wiener’s theory developed in the 1940ies; as far as the discrete
case is concerned, everything goes back even further, since it can
all be deduced from the Gauss-Markov theorem. Nevertheless, we
claim that the approaches presented here give a fresh and quite use-
ful view on many image processing problems.

We will discuss here the case of linear finite impulse response
(FIR) filters in one, two or more dimensions. The concept presented
here allows to exploit knowledge on both noise characteristics (in
terms covariance matrices) and statistics of the underlying signal
(in terms of the autocorrelation function). We emphasize that op-
timal filter design cannot be done without considering the signal
structure and noise structure. Our filter approach called signal and
noise adaptive filter or SNA-filter allows to combine both sources
of knowledge to a combined optimal filter.

2. SIGNAL MODEL

2.1 Filter model for an ideal error-free signal s

Let us first assume that we have access to a certain block of noise-
free image data, for instance a rectangular block from a still image,
or a three-dimension space-time volume from an image sequence.
In any of these situations, by scanning a neighborhood of a given
pixel in an arbitrary but fixed order, we may convert the given data
into a vector s which then serves as input for our filtering task. The
desired filter coefficients can be stacked analogously to form a vec-
tor h. The filter equation that describes the output g which we would
like to obtain is given by

g = hT s . (1)

In contrast to this ideal situation, in practise there will always be
errors in the image data. It might even be that some of the pixel

Figure 1: Block diagram of the filter design scenario (unobservable
entities in the dashed frame)

values are not observable, e.g. due to sensor dropouts. Can we still
use the same filter coefficient vector h or would it be appropriate to
adjust these coefficients?

In order to answer this question, we must model the signal as
well the noise, and the final solution will be a special case of the
theory of optimum filters. It is not surprising that the second order
moments of the signal and the noise play a decisive role in this
process.

2.2 General model of the observed signal

To put this all in mathematical terms, let s ∈ IRM be the uncor-
rupted signal vector with M components. What we can observe is
not necessarily M-dimensional as well, for instance if some data
values are missing. For representing this, we define an observation
matrix K ∈ IRN×M . In the case of missing data, K consists of 0
and 1 values only, but the theory would work also for arbitrary ma-
trix elements ki j ∈ IR. Without noise, we would obtain the vector
z = Ks ∈ IRN (i.e. a linear transformation of the pixels in the con-
sidered neighborhood) as the observable entity, but in real-world ap-
plications, there is an additive noise component v in the measurable
pixel vector: z = Ks+v. Filtering this ‘vectorized’ pixel set z can
thus be written as scalar product ĝ = xT z using a filter coefficient
vector x ∈ IRN . The block diagram in fig. 1 provides a graphical
representation of our model, and the corresponding equation for the
actual filter output ĝ reads:

ĝ = xT z = xT (Ks+v) = xT Ks+xT v . (2)

Our task is to choose xT in such a way that the filtered output ĝ
approximates, on an average, the desired output g (eq.1) of the error-
free case as closely as possible.

2.3 Statistical joint moments of signal and noise

The next step is to define the statistical properties of the signal and
the noise processes, respectively. Let the noise vector v ∈ IRN be a
zero-mean random vector with covariance matrix Cv (which is in
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this case equal to its correlation matrix Rv):

E [v] = 0 and E
[
vvT

]
= Rv .

Furthermore, we assume that the process that generated the signal
s∈ IRN can be described by the expectation ms of the signal vector,
and an autocorrelation matrix Rs.

E [s] = ms and E
[
ssT

]
= Rs .

All these statistical moments can be measured from actual image
data, although it must be taken care that the correlation matrices Rs
and Rv should be positive definite1.

Our last assumption is that noise and signal are uncorrelated:
E

[
svT

]
= 0. Knowing these first and second order statistical mo-

ments for both the noise as well as the signal allows the derivation
of the optimum filter x.

2.4 Designing the Optimal SNA-Filter

Applying the signal model (ms,Rs) and the error model (0,Rv)
on equations (1) and (2), we obtain

E [g] = hT ms and E [ĝ] = xT Kms

for the expectation values (first order moments), and

E
[
g2

]
= hT Rsh and (3)

E
[
ĝ2

]
= xT (KRsK

T +Rv)x and (4)

E [gĝ] = xT KRsh (5)

for the second order statistical moments2. Next, we define the ap-
proximation error e between the ideal output g and the actual output
ĝ: e = ĝ−g.

In general, the approximation error e is not a zero-mean ran-
dom variable: E [e] = E [ĝ]−E [g] = (hT −xT K)ms. The expected
squared error Q as a function of the vector x can be computed from
equations (3) to (5):

Q(x) = E
[
e2

]
= E

[
ĝ2

]
−2E [gĝ]+E

[
g2

]
= xT (KRsK

T +Rv)x−2xT KRsh+hT Rsh

We see that a minimum mean squared error (MMSE) estimator can
now be designed. We set the derivative ∂Q(x)/∂x to 0 and obtain

x = (KRsK
T +Rv)−1KRsh . (6)

Applying this filter to the observable input z = Ks+v (exploiting
the symmetry of Rs and Rv), we obtain

ĝ = xT z = hT RsK
T (KRsK

T +Rv)−1z (7)

= hT RsK
T (KRsK

T +Rv)−1Ks+

hT RsK
T (KRsK

T +Rv)−1v = hT Js+ f (v) (8)

with some noise- (and not signal-) dependent second summand
f (v) which vanishes in expectation and some complicated weight
matrix J = RsK

T (KRsK
T +Rv)−1K between hT and the input

vector s. Comparing with equation g = hT s for the desired ideal
output g, we see that the essential difference is this weight matrix
J. The closer J gets to identity matrix, the better the ĝ approximates
g. But both unobservable data (N < M) and the existence of noise
(R 6= 0) cause deviations of J from I and make a perfect approxi-
mation impossible.

1The special case of some pixels being known exactly, which leads to a
positive semidefinite noise covariance matrix, is handled later in section 2.5.

2Note: these second order moments are no variances because neither g
nor ĝ are zero-mean random vectors!

2.5 Some special cases

Special case 1: Square and non-singular K (all pixels observable,
but arbitrarily reweighted and combined in linear form). In other
words: we observe a ‘blurred’ version of the original data. The noise
v has the same dimensionality as the signal s; therefore, we can in-
troduce a new error vector v′ =K−1v. In the block diagram, adding
v′ before the transformation K is equivalent to adding v afterwards.
The covariance/correlation matrix transforms according to

Rv = KR′
vK

T

Equation (7) then can be simplified to

ĝ = hT Rs(Rs +R′
v)
−1K−1z

This equation states that each coordinate in the canonical coordinate
frame has to be reweighted according to its signal-to-noise ratio.

Under the additional assumption of no noise (Rv = 0, K−1z =
s), we furthermore see that

ĝ = hT RsR
−1
s s = hT s = g

holds, i.e. we can achieve a perfect approximation for arbitrary
‘mixing’ of signal components in K as long as K is non-singular.

Special case 2: If some elements of the projected signal vector
Ks are known exactly, it is appropriate to extend our signal model
to include this case in a numerically advantageous way. In order to
obtain the corresponding signal and error model, we partition

Ks =
(

K1
K2

)
s and x =

(
x1
x2

)
in an error-free part (subscript 1, N1-dimensional) and an erroneous
part (subscript 2, N2-dimensional; N1 + N2 = N). Using basically
the same reasoning as before, we arrive at

x1 = (K1RsK1
T )−1K1Rsh (9)

x2 = (K2RsK2
T +Rv)−1K2Rsh . (10)

for the computation of the optimum filter x. Note that the single
equation (6) could in principle also serve for the computation of
the whole vector xT = (xT

1 ,xT
2 ) if there are error-free observations.

The restriction of Rv to positive definite matrices was not neces-
sary. Semi-definiteness of Rv is no problem as long as KRsK

T is
positive definite and, hence, invertible. However, the enhanced nu-
merical stability of the scheme and the reduced size of the matrices
that have to be multiplied and inverted call for the partitioned equa-
tions (9) and (10) in this case.

2.6 A different derivation: Gauss-Markov theorem

Equation (7) can be expressed as

ĝ = hT (Sz) = hT ŝ

This means that the operator

S = RsK
T (KRsK

T +Rv)−1 (11)

could be interpreted as a general signal restoration operator
that transforms a signal (or two-dimensional image or higher-
dimensional spatio-temporal volume) z to an equally sized signal
(image, volume) ŝ. In fact, it is the Wiener filter for this special
case. For specifying this operator, we only need the signal and noise
correlation matrices; it is independent of the sought filter h.

For increased simplicity, we now assume K = I. Then

S = Rs(Rs +Rv)−1
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A similar derivation of S can be obtained by minimizing the mean
squared error of the approximated signal ŝ directly. Using the
Gauss-Markov-Theorem [2, page 296], this leads to

S = (R−1
s +R−1

v )−1R−1
v

Although both representations look rather different, they are in fact
identical. Proof: Let A and B be two equally sized non-singular
matrices. Then

A(A+B)−1 =
(
(A+B)A−1

)−1 =
(
I+BA−1

)−1

=
(
B(B−1 +A−1)

)−1 = (B−1 +A−1)−1B−1 .

2.7 Relation to normalized convolution

The SNA-filter approach presented here closely resembles to the
concept of normalized convolution [3, 4]. Written in the notation
used here, this approach tries to approximate the observed signal z
(implicitly assumed to have the same dimensionality as the under-
lying signal s – no special error model is provided) with a properly
weighted sum of ‘base functions’. The resulting vector3 ẑ is given
by:

ẑ = B(BT WaWcB)−1BT WaWcz︸ ︷︷ ︸
r

(12)

where the columns of B are the so-called ‘base functions’ (which
should rather be called ‘base vectors’ or ‘sampled base functions’).
Wa Wc are diagonal matrices called ‘applicability’ and ‘certainty’.
The (shift-invariant) applicability indicates the (user-defined) gen-
eral ‘importance’ of each point in the neighborhood and the cer-
tainty gives the relative weight for each actual pixel. The resulting
weight is a product of both values.

In spite of the similarity between B in (12) and the observation
matrix K in our equations, it is something fundamentally different.
K maps the signal s to the observable vector space in which z =
Ks+v exist, whereas B is the signal model we want to impose
and one is often only interested in the weight for each different base
vector, i.e. in the coefficients of r. For instance, if gradients in 3×
3 patches are sought, two base function would be the vectorized
versions of[ −1 −1 −1

0 0 0
1 1 1

]
·G and

[ −1 0 1
−1 0 1
−1 0 1

]
·G

where · denoted pointwise multiplication and G is some averaging
(Gaussian, binomial, or other). A third base function would have
to be an all-one column vector which captures all DC offset (and
thus makes the other two components insensitive to dc offsets). The
result of normalized convolution would be a decomposition of the
given image in four parts: x-gradient + y-gradient + offset (these
three parts sum up to the respective central values of ẑ) + ‘part
which does not fit in this simple signal model’ (difference z− ẑ).
The general concept of normalized convolution is ‘reduction of a
given signal to a simplified signal model’.

Our approach, on the contrary, serves for optimally comput-
ing filter sets for sought ideal outputs.4 One has to define the de-
sired output for the ideal noise free signal by setting h accordingly
– without considering errors or missing data. Given the signal-to-
noise ratio, it is then possible to derive the SNA-filter coefficients.

3Although all image examples in [4, chapter3] implicitly take the cen-
tral pixel for composing the output images, the mathematical core is the
approximation of a M-dimensional signal vector by a weighted sum of M-
dimensional base vectors.

4If several filters are to be applied, e.g. gradients in x and y direction, it is
possible to form a matrix HT = (h1,h2, . . . ,hp) to produce an output ĝ =
(ĝ1, ĝ1, . . . , ĝp). Everything between hT

i and z (this matrix-valued operation
could be denoted as a general signal restoration operator) is independent of
hT

i and has to be computed only once.

For instance, for de-noising natural images with their typical low-
pass autocorrelation, our scheme will in general compute filter coef-
ficients which roughly look like Gaussians – just because the struc-
ture of the signal dictates it.

In order to illustrate the fundamental difference between the
two concepts, we decided to deal with a problem which was also
handled in [4]: restoration of an image with missing pixels. We as-
sume noise-free data, thus setting aside the special strength of our
algorithm for handling different signal-to-noise ratios properly.

By applying normalized convolution, we would set B to one
single column vector of 1s, i.e. the signal model is: uniform gray
value in the considered signal patch. What we effectively do is fil-
tering the image with a modified applicability (e.g. Gaussian) where
all coefficients corresponding to missing data are set to zero (and
normalized afterwards). The important point is that weighted aver-
aging will appear everywhere – even if we know that some pixels
are known without error. A highly peaked applicability will reduce
this effect, but known pixels will change.

Later on, we will show that the very same task leads to a dif-
ferent result with SNA filtering: an image without noise and only
missing data will remain unaltered at the available pixels, whereas
missing pixels will be interpolated from their neighbors.

3. APPLICATION EXAMPLES

3.1 Reconstruction of missing data

The most simple case is the reconstruction of a signal from a vector
s representing a noisy spatio-temporal data volume. The model op-
erator h is trivial to construct; it is 1 for the central value and 0 else,
i.e. h is 0 except for a single 1 at the central element.

Equation (10) gives the optimum solution for any arbitrary con-
figuration of noise and signal covariances. Nevertheless, we will
focus on an especially interesting and illustrative case here: recon-
struction from missing data. Let us assume that we have no noise
at all. Furthermore, we assume that only N out of M pixels are ob-
servable. The observation matrix K ∈ IRN×M is the N ×N identity
matrix with M −N additional 0 column vectors inserted at the po-
sitions corresponding to missing data.

The matrix KT K then is a M×M identity matrix where all
diagonal elements corresponding to missing data have been set to
0. This means that KT Kh = 0 if the central pixel is missing and
KT Kh = h if it is available.

For the latter case, we get

ĝ = sT KT (KRsK
T )−1KRsh

= sT KT (KRsK
T )−1(KRsK

T )Kh

= sT KKT h = sT h = g .

i.e. we leave the central pixel unchanged and the resulting approx-
imation error will be 0. An image with some missing pixels will
remain unaltered at the given points. If, however, the central pixel
is missing, the same approach yields

x = (KRsK
T )−1KRsh

to interpolate the central pixel from its neighborhood. Clearly, x
is an coefficient vector that depends on the individual pattern of
missing pixels. The knowledge of the statistical correlation between
the (missing) central pixel and available neighbors automatically
provides an individual, properly weighted interpolation kernel. The
very same approach allows also to interpolate from noisy data.

We will present some experiments for interpolating a low res-
olution baboon image (64× 64 pixels) using 5× 5 FIR filters. The
low resolution makes this task a little bit more difficult because im-
portant image structures like eyes only consist of a few pixels and
are hard to reconstruct if they are missing. Figure 2 shows a pos-
sible incomplete baboon image. We eliminated 25% of the pixels
here. All missing points are set to white. For our experiments, we
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Figure 2: The well known baboon image with 25% of the pixels
(1024 out of 4096) missing. Computing gradients from images like
this is obviously a difficult problem...
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Figure 3: Reconstruction from an image with missing data

took the original image, added noise, and then marked some ran-
domly chosen pixels as missing. These steps correspond to the first
three images of the image array in fig. 3. The last picture in the first
row is a binary picture and shows the missing points.

The second row illustrates the image model. We assumed direc-
tion dependent exponential decay of the image autocorrelation func-
tion (acf). It can be seen that the chosen image has an anisotropic
acf.

The reconstructed image is shown at the second position in the
bottom row. For comparison, the result of ideal filter (here: central
pixel only) applied to the true and complete image is shown to the
left of the reconstructed image. The last image in the third row is the
(scaled) difference images between the ideal filter output and SNA
filter output.

We want to point out that the theory presented here is applica-
ble to any arbitrary desired ideal filters h. Therefore, we changed
the task from reconstruction to computing a horizontal derivative,
i.e. the second example gives the SNA-filter output if h is chosen
to be the vectorized form of a 5× 5-matrix with (.5,−1,0,1,−.5)
as central row vector and 0 elsewhere. Figure 4 shows the approxi-
mated difference filter output. It is ordered in the same way as fig. 3.
Comparing the SNA-filter output with the ideal one, it is visible that
all horizontal edges were captured.
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Figure 4: Computing the derivative in one spatial direction from an
image with missing data

3.2 Global prefiltering

In general, the SNA-filter x has to be computed for each pixel in-
dividually. However, if the error structure is not pixel dependent, it
is possible to compute a common SNA-filter operator for all pixels.
Except for some highly artificial situations this means that we have
to restrict K to the identity matrix.

The model of independent and identically distributed Gaussian
noise in all pixels, however, can be handled very well with a global
SNA prefilter for noise removal.

The usual method of applying Gaussian or binomial filters for
de-noising can now be replaced with a statistically justified method
of averaging. The new method takes the signal structure into ac-
count and the width of the filters is no free parameter anymore, but
determined by the autocorrelation of the image (or, more precisely:
the multidimensional equivalent of the signal-to-noise ratio).

4. CONCLUSIONS

We have shown that apparently different tasks such as image in-
terpolation (error concealment), and the design of filter operators
can be unified in a common framework based on the MMSE error
criterion. Within this framework, design parameters that are often
difficult to optimize manually are replaced by principles that are
based on measurable characteristics of images, such as the autocor-
relation function. The discrete and finite formulation of this theory
lends itself especially well to image and sequence processing.
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