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ABSTRACT

Hybrid filter banks (HFB) Analog/Digital (A/D) systems
permit wide-band, high frequency conversion. This paper
presents theoretical results on the equivalence between ana-
log and digital analysis filter banks with A/D Converters
(ADC) for bandlimited signals. We give the performance of
HFB ADCs associated with easy-to-implement analog fil-
ters and synthesis bank obtained by truncating the impulse
responses of ideal filters permitting perfect reconstruction,
in both cases of discontinuous and continuous frequency re-
sponses.

1. INTRODUCTION

In wireless communication and a number of other domains,
the demand for higher data rates together with versatility is
always rising. Significant improvements have been achieved
in the digital signal processing part of telecom systems, but
the A/D conversion is still a bottleneck. Low costs, for in-
stance, need higher working frequency whereas higher data
rates and versatility need much wider bandwidths. The par-
allelization of channels is a first idea when trying to build a
very wide band ADC. Hybrid Filter Banks (HFB) are very
good candidates for that, since they achieve an intrinsic par-
allel splitting of the signal without being subject to some
drawbacks of more classical solutions such as time-interleaved
ADCs (e.g. high sensitivity to jitters, variability of channel
gains). Discussions on HFB advantages may be found in [6]
or [1]. The authors gave the right analysis formulas taking
into account the effective sampling within each path. In [2]
the authors proposed a design method which leads to define
both analysis and synthesis filters. In this paper we pro-
pose a method which takes into account the need of dealing
with available, simple, high speed analog filters that can be
found within a given technology. Indeed, considering cost
targets, these filters can only be implemented with high-
frequency integrated components such as integrated LCs,

gmC amplifiers or Surface Acoustic Waves (SAW) devices.
In any case, only simple transfer functions can be imple-
mented (typically resonators). The set of possible choices
for the analog filters being small, their parameters must be
considered as input (prior data) of the design.

The aim of this method is to start with the knowledge of
the analog transfer functions {Hk(s)} in order to reach the
discrete responses, namely, {Fk(ω)}. To do that, one way
could be to find a digital analysis filter bank equivalent (in
a given frequency band) to the analog one, then to use the
theoretical background of Digital Filter Banks ([3], [5]) to
get the corresponding synthesis filter parameters. Another
idea is to globally work out the synthesis filter bank from
the knowledge of the analog one. To do this, several tracks
may be followed using approximation [4].

In this paper we first present an equivalence between an
analog M -band analysis filter bank {Hk(s)}0≤k<M with
M ADCs (see Fig. 1) and a digital M -band analysis filter
bank {Hd

k (ω)}0≤k<M with a preceding ADC (see Fig. 2)
for bandlimited signal. We use classical results of Perfect
Reconstruction (PR) filter banks in order to calculate the
theoretical PR digital synthesis filters associated with any
analog M -band analysis filter bank. Then we study 4-band
HFB constituted of easy-to-implement low-pass and band-
pass analog analysis filters with synthesis filters obtained
by truncating the impulse responses of the ideal PR ones.
Effects of frequency responses’ smoothness is shown.

2. EQUIVALENCE BETWEEN ANALOG FILTER
BANKS AND DIGITAL FILTER BANKS FOR

BANDLIMITED CONTINUOUS TIME SIGNALS

The analog M -band analysis filter bank associated with M
ADCs working at the lowest rate 1/(MT ) is presented in
Fig. 1. An analog filter is described either by its transfer
function Hk(s) or its frequency response Hk(jΩ) (Ω ∈ R
and j =

√
−1). We introduce the digital analysis filter bank
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in Fig. 2 with an ADC working at the highest rate 1/T . A
digital filter is described by its frequency response Hd

k (ω), a
2π-periodic function of the normalized pulsation ω = ΩT .
In the following, we assume that the continuous time signal

x(t) - H0(s) �
�
U -

MT

x0(m)

- H1(s) �
�
U -

MT

x1(m)
...

- HM−1(s) �
�
U -

MT

xM−1(m)

Fig. 1. Analog M -band analysis filter bank and ADCs.

x(t) is bandlimited, i.e., it satisfies the condition

∀Ω ∈ R, |Ω| > π/T ⇒ |X(Ω)| = 0, (1)

with X(Ω) =
∫

R x(t)e−jΩt dt the Fourier transform of x(t).

�
�
U

T
x(t) x?(n)- Hd

0 (ω) -����
↓ M - x0(m)

- Hd
1 (ω) -����

↓ M - x1(m)
...
-Hd

M−1(ω) -����
↓ M - xM−1(m)

Fig. 2. Digital M -band analysis filter bank and ADC.

2.1. Identities between analog / digital filters and ADCs

Theorem 1 The operations described by the block diagrams

(ii) x(t) Hd
k (ω)-�

�
U

T
- y?(m)

(i) x(t) - Hk(s) �
�
U -

T

y?(m)

are equivalent for any continuous time signal x(t) satisfying
the condition (1), if and only if

∀ω ∈]− π , π], Hd
k (ω) = Hk(jω/T ). (2)

Corollary 1 The filter bank with ADCs of Fig. 1 is equiv-
alent to the ADC with the filter bank of Fig. 2 for any con-
tinuous time signal x(t) satisfying the condition (1), if and
only if the relation (2) holds for 0 ≤ k < M .

Proof. It results from Theorem 1 and the following equiva-
lence between block diagrams :

�
�
U

MT
- ≡ �

�
U

T ����
↓ M -

that the operations described by the block diagrams

(ii) x(t) Hd
k (ω)-�

�
U

T

-����
↓ M - y?(m)

(i) x(t) - Hk(s) �
�
U -

MT

y?(m)

are equivalent for any continuous time signal x(t) satisfying
condition (1), if and only if the condition (2) is satisfied. The
proof of theorem 1 is given in appendix A.

2.2. Working out the ideal frequency responses

For 0 ≤ k < M , the filters {Hk(s)} and {Hd
k (ω)} are

assumed to be linked with the condition (2). We are now
interested in the determination of the synthesis filter bank
described in Fig. 3 so that when cascaded with the analy-

x0(m) -����
↑ M - F0(ω) - i++

+

- x̂(n)

x1(m) -����
↑ M - F1(ω) -

6i++

+
6...

xM−1(m) -����
↑ M - FM−1(ω)

Fig. 3. M -band synthesis filter bank.

sis filter bank of Fig. 1, the output signal x̂(n) satisfies the
relation

∃τ ∈ Z, ∀n ∈ Z, x̂(n) = x?(n− τ). (3)

We assume without loss of generality that τ = 0 in rela-
tion (3). Neither causality, nor stability, nor finite impulse
response for the filters {Fk(ω)} are assumed. It results from
corollary 1 that the filter banks with ADCs of figures 1 and 2
are equivalent. It is well-known ([3]) that perfect recon-
struction is achieved if and only if the relation (4) holds:

∀ω ∈ R, Hd(ω).


F0(ω)
F1(ω)

...
FM−1(ω)

 =


M
0
...
0

, (4)

where Hd(ω) is a square matrix of order M whose element
localized on the (k + 1)th row and the (` + 1)th column is
equal to Hd

k,`(ω) = Hd
`

(
ω − 2kπ

M

)
.
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3. EXAMPLE: SYNTHESIS OF 4-BAND HFB WITH
2ND ORDER ANALOG FILTERS

The proposed method is now applied to a 4-band HFB where
the analysis filters are built with four simple second order
resonators in order to ease the implementation:

H0(s) = λ0
s2+2ω0s cos θ0+ω2

0
(5)

Hk(s) = λks
s2+2ωks cos θk+ω2

k
(1 ≤ k ≤ 3) (6)

The filters are assumed to be causal and Bounded Input
Bounded Output (BIBO) stable.

3.1. Frequency responses of digital filter bank

Fig. 4. Frequency response magnitudes (in dB) for PR.

Fig. 4 shows the frequency response magnitudes of analog
(or equivalently discrete according to the previous section)
analysis filters and the frequency response magnitudes of
synthesis filters given by the classical PR method (4). In
our simulations the parameters are T = 1, ω0 = ω1 = 1,
ω2 = 2.5, ω3 = 1.75, θ0 = θ2 = π

4 , θ1 = π
8 , θ3 = 4π

15 , and
the λk (0 ≤ k ≤ 3) are adjusted in order to have a maximal
gain of 0 dB. We observe the discontinuities in the synthesis
filter frequency responses due to the discontinuities of the
imaginary part of Hd

k (ω).

Remark 1 When the analog filter is real, its frequency re-
sponse has an Hermitian symmetry: ∀Ω ∈ R, Hk(−jΩ) =
[Hk(jΩ)]?, where x? denotes the complex conjugate of x.
Hence the frequency response of the digital filter Hd

k (ω)
satisfying condition (2) is generally not continuous in π +
2π Z, even for a real analog filter, except when the phase of
Hk(jω/T ) vanishes in ω = ±π.

It results from the previous remark that the digital filter sat-
isfying the condition (2) is generally BIBO unstable, be-
cause when the impulse response is absolutely convergent,
the frequency response is continuous for all ω ∈ R. More-
over the transfer function does not exist in general.

3.2. Performance with truncated impulse responses

HFB implementation requires finite lengths for the synthe-
sis filters. Thus, the ideal responses had to be truncated to
the range [−63, 64]. First, the impulse responses were esti-
mated by applying an inverse Discrete Fourier Transform on
the frequency responses with a significant number of points
(4096). Then the distorsion may be computed according to:

T0(ω) = 1
M

∑M−1
k=0 F ′

k(ω)Hd
k (ω) (7)

and the aliasing (1 ≤ p ≤ 3) :

Tp(ω) = 1
M

∑M−1
k=0 F ′

k(ω)Hd
k (ω − 2pπ

M ). (8)

The distorsion and aliasing magnitudes may be seen on Fig. 5.

Fig. 5. Distorsion and aliasing magnitudes (in dB) with
truncated synthesis filter impulse responses of Fig. 4.

3.3. Synthesis filters with continuous frequency responses

It results from a classical Fourier Transform property that
discontinuities in the frequency responses imply that the im-
pulse responses do not quickly decrease to infinity. Hence,
their truncation strongly modifies the filters. Then it is nat-
ural to modify the analog filters in order to obtain contin-
uous frequency responses. This is what we did with the
still easy-to-implement filters Hk(s) = λk(s+µk)

s2+2ωk cos θk+ω2
k

(0 ≤ k ≤ 3), where µk = ω2
k−π2

2ωk cos θk
.
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Fig. 6 shows the frequency response magnitudes of the
(analog or digital) analysis filters and the synthesis filters
obtained by the PR method (4. In our simulations, we chose
T = 1, ω0 = 3π

10 , ω1 = π
2 , ω2 = 4π

5 , ω3 = π, θ0 = π
3 ,

θ1 = 0.369π, θ2 = θ3 = 0.403π.

Fig. 6. Frequency response magnitudes (in dB) for PR.

Fig. 7. Distorsion and aliasing magnitudes (in dB) with
truncated synthesis filter impulse responses of Fig. 6.

Fig. 7 shows that the distorsion and aliasing modulus
obtained by truncating the impulse responses of the synthe-
sis filters to the range [−63 , 64] are significantly improved,
compared to Fig. 5.

4. CONCLUSION

Hybrid filter banks A/D systems permit wide-band, high
frequency conversion. Their design should be based on easy-
to-implement given analog filters. We have presented an
equivalence between analog and digital M -band analysis
filter banks with ADCs, for bandlimited signal. We used
classical results of Perfect Reconstruction (PR) filter banks
in order to calculate the theoretical PR synthesis digital fil-
ter bank associated with any analog M -band analysis filter
bank. Then we studied 4-band hybrid filter banks consti-
tuted of second-order analog analysis filters with synthe-
sis filters obtained by truncating the impulse responses of
the ideal PR ones and showed the effects of frequency re-
sponses’ smoothness.

A. PROOF OF THEOREM 1

In both cases (i) and (ii) the Fourier transform Y ?(ω) of
the signal y?(m) is a 2π-periodic function and we have :

(i) : Y ?(ω) =
1
T

∑
p∈Z

Hk

(
j ω−2pπ

T

)
X

(
ω−2pπ

T

)
(∀ω ∈ R)

(ii) : Y ?(ω) =
1
T

∑
p∈Z

Hd
k (ω)X

(
ω−2pπ

T

)
(∀ω ∈ R)

which becomes, when x(t) satisfies the condition (1):
(i) : Y ?(ω) = 1

T Hk

(
j ω

T

)
X

(
ω
T

)
(∀ω ∈]− π , π])

(ii) : Y ?(ω) = 1
T Hd

k (ω)X
(

ω
T

)
(∀ω ∈]− π , π]). �
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