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ABSTRACT
The adaptive Parallel Subgradient Projection (PSP) technique im-
proves the convergence speed, in noisy environment, of linear-
projection-based algorithms (e.g., NLMS and APA), with low com-
putational complexity. The technique utilizes weighted average of
the metric projections onto a series of closed half-spaces which con-
tain, with high probability, unknown system to be identified. So far,
mainly for simplicity, uniform weighting has been used. However,
it is of great interest to develop more strategic weighting for further
improvements of convergence, where the weight design should also
be with low computational complexity.

This paper presents a novel weighting technique named Pair-
wise Optimal WEight Realization PSP (POWER-PSP). For each
pair of half-spaces, the proposed technique realizes the exact metric
projection onto their intersection. Even for � �� 3� half-spaces, the
technique can approximate, in computationally efficient way, the
exact projection onto their intersection by applying the same idea
to certain hierarchical structure of half-spaces. Simulation results
exemplify that the proposed technique yields drastic improvements
of convergence speed and robustness against noise, while keeping
linear computational complexity.

1. INTRODUCTION

A simple linear-projection-based adaptive algorithm so-called
NLMS (Normalized Least Mean Squares) [1, 2] has been playing
a central role, in the presence of possibly non-stationary inputs
(e.g., the acoustic echo canceling problem [3]), due to its simplicity
and robustness against noise; e.g., [4, 5]. To raise the convergence
speed of NLMS, particularly for highly-colored excited inputs like
speech signals, APA (Affine Projection Algorithm) was proposed
[6, 7], which is based on projection onto certain linear variety (cf.
the footnote 1 in the next page). Unfortunately, however, it is ob-
served that APA is seriously unstable under noisy condition (Re-
cently certain inherent sensitivity of APA to noise was investigated
through a simple statistical analysis on the set-membership to the
projected linear varieties [8]). Moreover, even in low noise condi-
tions, fast convergence can be just achieved by the use of projection
onto low dimensional linear variety, which increases computational
costs. On the other hand, the RLS (Recursive Least Squares) algo-
rithm is well known to exhibit fast convergence for stationary inputs
at the expense of a large increase in computational complexity [2].
For computational efficiency, Fast RLS (FRLS) has been also pro-
posed (see [9] and references therein). However, for non-stationary
inputs including speech signals, it is observed that the (N)LMS al-
gorithm exhibits better tracking behaviour than (F)RLS [9, 10].

To alleviate the drawbacks in the aforementioned algorithms,
an efficient convex-projection-based scheme named adaptive Par-
allel Subgradient Projection (PSP) algorithm has been proposed
[8] (As other convex-projection-based schemes, the so-called set-
membership approaches (e.g., SM-NLMS[11] / F-SM-NLMS[12])
were also developed. In [13], a unified view for projection-based
algorithms, surely including NLMS, APA, set-membership ap-
proaches and the adaptive PSP algorithm, has been presented). In
[8], stochastic property sets [which are closed convex; see Sec. 2
(1)] are introduced, which is designed to contain, with high proba-
bility, the unknown system to be identified, based on the statistics
of noise process (see Example 2 in Appendix), which yields ro-
bustness against noise. Then, since computing the projection onto
such a convex set requires, in general, huge computational complex-
ity, the algorithm alternatively uses projection (well-approximating
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it and being just computed with linear computational complexity)
onto certain closed half-space, which exactly contains the stochas-
tic property set [see Sec. 2 (2)]. Note that the intersection of several
number of half-spaces which are constructed as above is expected to
be a sufficiently small set containing the unknown system with high
probability. Therefore, it would be a natural and meaningful strat-
egy to find a point in the intersection. Based on this strategy, the
adaptive PSP algorithm utilizes so-called parallel projection; i.e.,
weighted average of projections onto the half-spaces. So far, as a
simple realization of the weighted average, uniform weights have
been commonly used. However, in such a case, the update is not
necessarily in the best direction toward the intersection. The use
of appropriate weights, instead of uniform weights, is expected to
improve the convergence speed. Therefore, it is of great interest to
develop strategic adaptive weighting techniques, which should also
be with simple computation.

In this paper, we propose an efficient adaptive weighting tech-
nique named Pairwise Optimal WEight Realization PSP (POWER-
PSP) to improve convergence speed. Computation of the weights
giving the exact direction toward the intersection of a large num-
ber of half-spaces, unfortunately, requires extra computational com-
plexity comparable to APA. To avoid it, we introduce certain hi-
erarchical structure of half-spaces. The proposed technique firstly
computes, for each pair of half-spaces, the exact metric projection
onto their intersection. Even for � �� 3� half-spaces, by applying
the same idea to the hierarchical structure, the technique can ap-
proximate, with moderate increase of computations [see Remark 1
(a)], the exact projection onto their intersection, which leads to a
reasonable direction of update. Numerical examples demonstrate
that the proposed technique exhibits much faster convergence com-
pared with regularized RLS, regularized APA, and NLMS even in
highly noisy condition. Moreover, the increase of � in POWER-
PSP accelerates the convergence without any degradation of miss-
identification level in steady state.

2. PRELIMINARIES

Throughout the paper, we use the following notations. Let � and
� denote the sets of all non-negative integers and real numbers, re-
spectively. Define also �� :� ���0�. Let � � � denote the time in-
dex. Given � � �� , let� :� �

� be a real Hilbert space equipped
with the inner product ����� :� ���, ���� �� , and its induced

norm 	�	 :�
�
���

�1�2, �� �� , where the superscript � stands
for transposition. For any nonempty closed convex set � 
 � ,
the projection operator �� :� � � is defined by 	�������	
� min��� 	���	 ��� �� . The notation 
�
 stands for the car-
dinality of a set �.

In this paper, we address the following adaptive filtering esti-
mation problem, as is also depicted in Fig. 1. Let �	����� 
 �

be the input sequence, and define the sequence of input vectors
������� 
� as �� :� �	��	��1� � � � �	����1�

� �� , �� � �.
For 
 � �� , let �� :� �������1� � � � ������1� � ���� , �� � �.
From �������, the observable data process ������� 
 �

� is pro-
duced as �� :� � �

��
� ���� �� � �, where �� � � is the

(linearly modeled) unknown system to be estimated and �� :�
�������1� � � � ������1�

� � �� , �� � �, is the noise vector. The
problem is to estimate �� by the adaptive filter � �� based on
the observable data �� ����� and ������� . We define the following
stochastic property set:
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Figure 1: Adaptive Filtering Scheme

����� :�
�
� �� : 
���� :� 	�����	2 � �

�
��� � �� (1)

where �� :� � �
� is the estimation residual function defined by

����� :� � �
����� , �� � �, and � � 0 (NOTE: ����� is obvi-

ously closed convex). Noticing that ����
�� � �� , the membership

probability Prob��� � ������ is equivalent to Prob�	��	2 � ��.
Therefore, by setting � to an appropriate value (cf. Example 2),
the membership �� � ����� is guaranteed with high probability,
which leads to stable behavior (strictly saying, monotone approach
to the set ����� at each time � � �) of the algorithm [see Remark
1 (c)]. While computation of the direct projection onto the closed
convex set ����� requires, in general, huge computational com-
plexity, the projection onto the closed half-space1 ��

� ��� :� �� �
� : ����� ∇ 
������
����� 0��������� has a simple closed-
form expression as follows:

���

�
������ �

�
��

�	����

�∇ 	�����2 ∇ 
����� if � ����
� ����

�� otherwise.
(2)

Note that ���

� ���
��� �� ����
���� [8]. Given � � �� , define the

set of time indices �� :� ���1�� � �
�2�
� � � � � � ����� � 
 �, �� � �, and the

weights �
���
� � 0� �� � �� �
 ��, �� � �, to satisfy ∑��
� �

���
� �

1, �� � �. Then the adaptive PSP algorithm is given as follows.

Algorithm 1 [8] (Adaptive PSP (Parallel Subgradient Projec-
tion) Algorithm) Suppose that a sequence of closed convex sets
���������
� 
� is defined as in (1). Let �0 �� and define a
sequence ������� 
� by

���1 � �����

�
∑
��
�

�
���
� ���

� ����
�������

�
��� � �� (3)

where �� � �0�2�� � with

��:�

�	

	�

∑����
�

���
�

�
�
��

��
� ��� �

�������

�
�
�

2

�
�
�∑����

�
���
� �

��
� ��� �

�������

�
�
�

2 � if �� ��
�
��
� �

�
� �����

1� otherwise�

In the following section, we focus on the design of weights �
���
� .

3. MAIN RESULTS

In this section, we firstly present a simple closed form expression to
give the projection onto intersection of a pair of closed half-spaces.
Based on this fact, we propose the POWER-PSP algorithm, a com-
putationally efficient scheme to achieve a reasonable direction of
update for more than two hyperplanes.

3.1 Projection onto Intersection of Pair of Closed Half-Spaces

For a given pair of hyperplanes Π� (
� ), �� 1�2, let Π�
� (
� ),

�� 1�2, be the closed half-spaces whose boundary hyperplanes are
Π�, �� 1�2, respectively. Then, the following proposition holds.

1Given � �� and a closed subspace � �� , the translation of �
by � defines the linear variety � :� � �� :� ���� : � � ��. If
dim���� � 1, � is called hyperplane, which can be expressed as �� �
�Π � �� �� : ����� � �� for some �0 ���� �� and � � ��. With the
hyperplane, we can define a closed half-space Π� :� ���� : ����� � ��.

H: �

�
opt
1�

opt
2A: �1 B: �2

C: ��1��2���

D�1

�1

�2

�2

�1�� �2��

Figure 2: Geometric interpretation of Theorem 1 in the cases of cos�1�
cos�2 � 0. � :� �� � �����1 	���	��2 	�� �� : ��	 � ��.We
can easily see that 
�1��2 ��� � �.

Proposition 1 For any � �� ,

�Π�

1 �Π�

2
��� �

�

�
�Π�

1
���� if �Π�

1
��� �Π�

2
(the roles of 1 and 2 are interchangeable)�
�Π1�Π2���� if �Π�

2
��� �� Π�

1 ��Π�

1
��� ��Π�

2 �
(4)

The next theorem gives a useful way to compute �Π1�Π2��� from
�, �Π1��� and �Π2���.

Theorem 1 For given different vectors �1��2 �� and � ��
(i.e., � �� ��1��2�, �1 �� �2), suppose that a pair of hyperplanes,
��� 1�2� (see Fig.2)

�� :��������� :� �� �� : ������������ 0� 
� � (5)

satisfy �1��2 �� /0. Then, we have

��1��2�������
�
�

opt
1 �1��

opt
2 �2��

�
� (6)

where

� :�
�

opt
1 	�1��	2 ��

opt
2 	�2��	2����opt

1 �1 ��
opt
2 �2��

���2 � (7)

�
opt
� :�

cos�� sin��
cos�1 sin�1 � cos�2 sin�2

� ��� 1�2� (8)

cos�1 :�
��1����1��2�
	�1��		�1��2	

� cos�2 :�
��2����2��1�
	�2��		�2��1	

�

NOTE: The denominators in (7) and (8) are non-zero due to �1�
�2 �� /0. By (5), apparently ���

��� � �� (�� 1�2).
(Sketch of Proof):
(I) If cos�� � 0, ��� 1�2: First of all, by���� ����� � ��2

[rad] and the fact of elementary geometry on inscribed angle,
we get ���� ����� and ��������� (see Fig. 2).
Then, noting the areas of �HDB and �HDA in Fig. 2,

�
opt
1 : �opt

2 � �� cos�1 : ��cos�2

� cos�1 sin�1 : cos�2 sin�2� (9)
which verifies that (8) gives the weights that realize the direction
toward the intersection �1��2.

(II) If cos�1 � 0 or cos�2 � 0: We can prove in a similar way to (I).
�

By (4) and (6), ���

1 ��
�

2
��� can be easily computed, where ��

�

(�� 1�2) is a closed half-space with the boundary hyperplane ��.

3.2 Pairwise Optimal WEight Realization

Followed by the discussion in Secs. 1 and 2, Prob��� ����
� ���� is

sufficiently high, hence we can expect that ����
� ���

��� is a reason-
able candidate as an approximation of ��. Unfortunately, extension
of Proposition 1 (Theorem 1) to the case of more than 2 half-spaces
(hyperplanes) is not a straightforward task, and ����

� ���
��� re-

quires comptational load like APA. To approximate ����
� ���

���
as much as possible while saving computational costs, we present a
weighting technique below, which applies Proposition 1 and Theo-
rem 1 pairwise to a series of closed half-spaces.
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First of all, for given � ��� , define the control sequence �
�0�
� :�

���1�� � �
�2�
� � � � � � ����� �
�, ����, where �

���
� ’s (�� 1�2� � � � ��) repre-

sent the time indices used in the 0-th stage at time � in the POWER-
PSP (see below). Then, �� � �, ��� 1�2� � � � �� (� � �� ), de-

fine inductively �
���
� 
 ���1� �2� : �1� �2 � �

���1�
� � �1 �� �2� such as

1 � 
����
� 
 � 
����1�

� 
 � � � � � 
��1�� 
 � 
��0�� 
 � �. The POWER-
PSP algorithm is given as follows.

Algorithm 2 (POWER-PSP Algorithm) Suppose that a sequence
of closed convex sets ���������� 
� is defined as in (1). Let

�0 �� be an arbitrary chosen initial vector and ��
���
� ���� 


�0�2� (�� � 0�1� � � � �� ) the sequence of step size satisfying

∏�
��0 �

���
� � 2. Then, define a sequence ������� 
� by the

following three steps:

Step 1: (The 0-th Stage)

�
�0�
��� :� ����

�0�
�



���

� ����
�������

�
� �� � �

�0�
� � (10)

where ���
� ����

����, �� � �
�0�
� , is computed by (2).

Step 2: (The 1-st to � -th Stage)

�
���
��� �� (�� � ���� � �

���
� ���� 1�2� � � � �� ) is produced ac-

cording to the hierarchical procedure as below:
for � :� 1 to � do

�
���
��� :� ����

���
� �

���
���

�
�
���
����1�

���1�
���1

��
���
����2�

���1�
���2

���
�
�

�� � �� ��� ��1� �2� � �
���
� � (11)

where the weights are defined, �� � �, �� � ��1� �2� � �
���
� ,

������ � ��1�2���2�1��, as

�
���
����� :�

�		

		�

0� if  !���
����1 �  !

���
����2 � 0 or  

���
����� � 0�

1� if  ���
����� � 0�

 !
���
������� !

���
����1 �  !

���
����2�� otherwise,

(12)

 !
���
����� :�  

���
�����

�
1�  2���

������

 
���
����� :�

�					

					�

0� if ����1�
����

��� � 0�

1�2� if ����1�
���1

�����1�
���2

� 0��
�
���1�
����

��������1�
����

�����1�
����

�
�������1�

����
���

����������1�
����

�����1�
����

��� � otherwise�

and� ���
��� is defined, �� � �, ��� ��1� �2� � �

���
� , as

�
���
��� :�

�					

					�

1� if ����
����1�

���1�
���1

��
���
����2�

���1�
���2

��� � 0�

�
���
����1

�������1�
���1

���
���2

��
���
����2

�������1�
���2

���
���2

�������
����1�

���1�
���1

��
���
����2�

���1�
���2

���
���2 �

otherwise.

end;
Step 3: (Update)

���1 :� �
���
��� � � � �

���
� � (13)

Note that, in Step 3, 
����
� 
� 1. In addition, in Step 2, in the �-th

stage, ����
��� (�� ��1� �2� � �

���
� ) is obtained just from �� , ����1�

���1

and ����1�
���2

(�1� �2 � �
���1�
� ) in the same way as ��1��2��� is ob-

tained just from �, �1 and �2 in Theorem 1. The following propo-
sition shows that Algorithm 2 is a special example of Algorithm 1,
the adaptive PSP algorithm.

1

2

3

4

1

3

1
�
�0�
��1

�
�0�
��2

�
�0�
��3

�
�0�
��4

�
�1�
���1�2�

�
�1�
���3�4�

����1 :�� �
�2�
����1�2���3�4��

�� 1��1�

�� 2��2�

�� 3��3�

�� 4��4� � :�-th Processor

Figure 3: An efficient example of implementation of hierarchical structure

in Algorithm 2 (� � 4). For brevity, the subscripts ����
�

(
 � 1�2�3�4) are
abbreviated to 
.

Proposition 2 (POWER-PSP) The vectors ���1 �� , �� � ��
[in (13)] generated by Algorithm 2 can be expressed in the form of
(3) by rearranging appropriately. In this case, the corresponding

weight ����
� is determined automatically by �

���
�����’s and � ���

��� ’s

shown in step 2, and satisfy �
���
� � 0 and ∑��
� �

���
� � 1. More-

over, the corresponding step size �� [in (3)] is given by �� �

��∏�
��0 �

���
� � �� � �.

Next, a systematic design of hierarchical structure (design of ����
� ,

�� � �, ��� 1� � � � �� ) is given below.

Example 1 (Binary-Tree Like Implementation) For given �
�0�
�

(�� ��), we suggest a systematic design of ����
� ’s (�� 1� � � � �� ),

�� � �, as shown in Fig. 3, which we call binary-tree like im-

plementation of Algorithm 2. That is, for example, for �
�0�
� :�

���1�� � �
�2�
� � �

�3�
� � �

�4�
� �, we define �

�1�
� :� ����1�� � �

�2�
� ����

�3�
� � �

�4�
� �� and

�
�2�
� :� �����1�� � �

�2�
� ����

�3�
� � �

�4�
� ���.

Note that in Example 1, � �� 
��0�� 
� is not necessarily in the form
of 2� (If � �� 2� , we can dispense with appropriate nodes). We
give some important remarks below.

Remark 1
(a) A simple inspection of (10) and (11) implies that the proposed

technique is (i) free from the computational load of solving a
system of linear equations and (ii) well-suited for � concurrent

processors (since
�������
�

��� � �����0��

��� � �, �� � 1� � � � �� ). With

such concurrent processors, the number of multiplications im-
posed on each processor, at each iteration, is �� �1��"���.

(b) The number of stages in binary-tree like implementation is no
more than � �1 � log2 ��1 (see Example 1).

(c) Proposition 2 guarantees that Algorithm 2 has the property of
monotone approach; i.e., 	���1���	 � 	�����	 if �� �
�

��

�0�
�

��
� ���� (For detail, see [8, Proposition 1]).

4. NUMERICAL EXAMPLES

To verify the efficacy of the proposed algorithm (POWER-PSP),
we compare POWER-PSP with NLMS, APA and RLS for es-
timating �� � � :� �

256. In these simulation tests, we ap-
ply the algorithms to the acoustic echo canceling problem2 (e.g.,
[3]) by using the USASI3 signal, which is known as speech-like
wide sense stationary process, as the input �	����� by following
the way in [8]. We use white noise, as �������, with SNR:�
10log10

�
#
�
$2
�

�
�#

�
�2
�

��
� 10dB ($� :� �������), which is a

usual condition in acoustic echo canceling problem. We evaluate the
normalized system mismatch defined as System Mismatch��� :�
10log10 	�����	2 �	��	2 �dB���� � �.

2Multi-channel acoustic echo cancellation (e.g., [14]) is also an inter-
esting application. However, to examine purely the effect of the proposed
weighting technique, we focus on the simplest single channel case.

3The USASI (USA Standards Institute) generation routine
is characterized as an ARMA model, which can be found in
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/usasi.txt.
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In all algorithms used in the first experiment shown in Fig. 4,
we employ the parameters, with the best performance among our
experiments, that achieve the level of around -20dB in steady state.
For NLMS, the step size is set to 0.15. APA (RLS) has a ver-
sion called FAP (FRLS), which is computationally efficient but is
similar or somewhat inferior to the original exact algorithm in con-
vergence behavior (see [9] and references therein). Since we con-
centrate on the performance of the algorithms, we do not consider
such fast implementations. On the contrary, to stabilize the con-
vergence behavior of APA and RLS (because of their sensitivity to
background noise), we use the regularized versions of them (see
[9] and references therein); i.e., Æ���� and Æ���� are added be-
forehand to the factors whose inverses are necessary, respectively.
Both Æ��� and Æ��� take the value of 20 times the power of the
input signal. For APA, 
 � 2 (
: dimension of affine projection)
with step size 0.04 is used. For RLS, we set the forgetting factor
� to 0.98 and let the initial matrix of the sample covariance ma-
trix be Æ0

���diag
�
���1����2� � � � �1� (Æ0

��� � 0�01) by follow-
ing a recommendation given in [2]. For the proposed algorithm, we
design the stochastic property set by 
 � 1 and � � �3 � 0 (see

(1) and Example 2), and the step sizes are set to �
���
� � 1 (for

�� 0�1� � � � �� �1), ����
� � 0�04. Moreover, for the present nu-

merical examples, we focus on the binary-tree like implementation

(see Example 1) with �
�0�
� :� �����1� � � � �����1�, � � 64 �

26�� � 6�, �� ��. We observe that POWER-PSP outperforms the
other existing methods. Furthermore, it is also observed that, due
to high level noise, the simple NLMS exhibits better performance
than regularized APA and RLS.

In the second experiment shown in Fig. 5, we examine the ef-
fects of increases of � (in POWER-PSP) and 
 (in APA). We employ
(a) � � 64, (b) � � 32, (c) � � 16 for POWER-PSP, and (a) 
 � 64,
(b) 
 � 10, (c) 
 � 3, (d) 
 � 2 for APA. The other conditions are
the same as the first experiment. We observe that the speed of con-
vergence is accelerated by increasing �, while keeping the low level
of system mismatch in the steady state and the linear computational
complexity [see Remark 1 (a)]. The observed instability of APA
with large 
 is due to high level noise (cf. the statistical analysis on
set-membership in [8]).
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Appendix

Under the standard assumption of the noise process of zero mean
i.i.d. Gaussian random variables � �0�%2�, a systematic design of
the stochastic property set ����� was proposed based on the follow-
ing simple formulae for � that rely only on 
 and on the variance %2

of the corrupting noise process �������.

Example 2 [8] (Design of Stochastic Property Sets) �1 :� �
��
2
�%2 � �2 :� 
%2 � �3 :� max��
�2�%2�0�, where �3: peak

of pdf, �2: mean value, �1: (mean value) � (standard deviation), of
random variable 	������	2 (� 	��	2), which obeys &2 distribu-
tion [see (1)].

716


	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Isao Yamada
	Masahiro Yukawa



