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ABSTRACT
In this paper, we consider a Time-Division CDMA system
operating in downlink mode in a multi-user multipath chan-
nel scenario. In order to implement RAKE reception, the
delays and the phases of the different paths have to be esti-
mated and the estimates have to be updated. In the context of
burst transmissions, the delays do not vary during a burst and
only the phases have to be tracked. In this paper we inves-
tigate the issue of phase tracking over rapidly time varying
multipath channels. We propose a new version of a conven-
tional phase recovery loop that can cope with unresolvable
paths. The optimization is based on the concept of prefilter-
ing. The analysis shows improved tracking performance in
comparison to the standard phase recovery algorithm.

1. INTRODUCTION

The conventional receiver for DS-CDMA communications is
the RAKE receiver. The RAKE receiver is a matched filter,
matched to the operations of spreading, pulse shape filtering
and channel filtering. It requires the knowledge of the delays,
the phases and the amplitudes of multipath components. We
assume that estimates of those channel parameters have been
obtained during an aquisition procedure. In this paper, we
will focus on the tracking step, which consists in updating
the channel parameters.

Typically, phases and magnitudes of the channel coef-
ficients vary considerably faster than the channel delays.
Time-Division CDMA system is a burst structured system
where we can assume constant delays during one burst (i.e.
one time-slot).

For instance in TDD mode of UMTS, the carrier radio
wave frequency f0 is around 2GHz, the chip rate 1

Tc
is around

4Mchip
�
s and the slot lasts about Tslot � 666µs. In the case

of a deterministic Doppler model, the maximum variation of
the phase (2π∆ fdTslot) is around 55o where ∆ fd � vm

v0
f0 is

the doppler spread, vm is the mobile speed and v0 is the wave
celerity. On the other hand, the maximum variation of the
path delay ( vm

v0
Tslot) is negligible during a slot, about 310 � 4

chip duration. Therefore in burst mode, it is just necessary to
track the phases and the magnitudes.

We will focus in this paper on the problem of phase track-
ing. This task is usually assessed by mean of a conventional
Phase Error Detector (PED), the remodulator loop [1][2].
The conventional PED operates correctly in the case of a sin-
gle path channel, but in the case of a multipath channel, the
output of the PED relative to one path becomes strongly in-
fluenced by the additional paths. In addition with the multi-
user interference, this will have a large impact on the perfor-
mance of the overall system. It is thus of paramount inter-
est to mitigate the effect of the adjacent paths on the task of
phase recovery. A new version of the conventional PED is

presented. The modification is based on the concept of pre-
filtering. This concept has been studied by D’Andrea and
Luise in [3] and by the authors in [4] for timing recovery in
a single path scenario. It consisted in inserting a prefilter in
the timing recovery loop and computing the optimal coeffi-
cients which minimize the timing variance. We propose to
generalize this concept to the phase recovery for a multipath
channel propagation. In this context, the prefilter coefficients
are calculated in order to minimize the phase variance and to
cope with adjacent and potentially unresolved multipath.

After a detailed description of the system model in sec-
tion 2, we introduce in the following section the standard
phase recovery loop. Its improved version including the pre-
filter is presented in Section 4. Numerical results are pre-
sented in Section 5, and conclusions are given in Section 6.

2. SYSTEM MODEL

The continuous-time baseband representation (complex en-
velope) of the transmitted signal is modeled as:

x � t � � Ts

K

∑
k � 1

∑
n

ak � n � sk � t � nTs � (1)

where ak � n � are the iid QPSK symbols with power A2,
transmitted by the kth source at time nTs. K is the number of
users. sk � t � is the signature of the kth user, which results from
the convolution between the kth spreading code 	 ck 
 and the
half-Nyquist filter he (square root raised cosine filter):

sk � τ � � Q � 1

∑
q � 0

ck � q � he � τ � qTc � (2)

where Tc � Ts
�
Q is the chip duration and ck � q ��� q � 0 �� Q � 1

are the chips. Let us assume that all K active codes are
known. We suppose by convention one desired code only,
the code number one. We note Γk j � τ � the cross-correlation

function between user k and j: Γk j � τ � � �
sk � sH

j � � τ � 1. The
multi-user signal from the transmitter travels through a multi-
path propagation channel with L independant paths modeled
as: h � τ � t � � ∑L

l � 1 αl � t � δ � τ � τl � , with αl � t � � ρle jθl � t � be-
ing the lth complex path tap and τl the respective path delay.

The received signal r � t � � � h � x ��� t ��� w � t � is perturbed
by an additive white complex gaussian noise w � t � , with a
two-sided power spectral density 2N0.

The receiver is a RAKE receiver. The received signal r � t �
is passed through an anti-aliasing filter (AAF) before being

1By convention, the exponent ��� � H represents hermitian transformation
i.e. f H � t ��� f ����� t � for a given function f and hermitian transposition for
vectors
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Figure 1: lth RAKE finger with the standard phase recovery
loop (without the prefilter p � i � ) or the improved version (with
the prefilter)

sampled at a rate 1
�
T , which must be at least equal to 2

�
Tc

to guarantee sufficient statistics for detection and synchro-
nization [2]. The RAKE receiver consists in a bank of L
RAKE fingers, one per path. In each finger, an interpolator-
decimator provides the samples at the desired interpolation
instants (τ̂l for the lth finger). Those samples are fed to the
”detection path” and to the phase recovery loop. The phase
recovery loop will be the topic of the next section. In the
”detection path”, the interpolated samples are despreaded by
computing the cross-correlation with the code of user #1 .
These despread signals are then combined using combining
coefficients (i.e. the complex conjugate of α̂l for the lth fin-
ger, where α̂l is the estimate of the channel coefficient αl) to
form a decision statistic. The lth RAKE finger with its phase
recovery loop is depicted in Figure 1.

3. THE CONVENTIONAL PHASE LOOP

We first consider the standard phase recovery loop for the lth

RAKE finger (cf Fig.1 without the prefilter). Its purpose is to
estimate the channel phase θl . The estimate of θl is updated
at a symbol rate by a phase error signal e � l ��m � filtered by the

loop filter g � l ��m � . The recursive equation of the phase recovery
loop is thus defined as:

θ̂l �m  1 � � θ̂l �m � �!� g � l � � e � l � � �m � (3)

where θ̂l �m � is the estimate of θl at instant mTs.

The Phase Error Detector (PED) computes e � l ��m � as follows

e � l ��m � � Im " e � jθ̂l # m $ â %1 �m � z1 � mTs � τl �'& (4)

where â1 �m � is the estimate of a1 �m � and z1 � t � is the output of
the matched filter sH

1 � τ � when r � t � is applied, i.e. z1 � t � �� r � sH
1 �(� t � . By using (1), it can be written as:

z1 � t � � Ts

L

∑
lt � 1

αlt

K

∑
k � 1

∑
n

ak � n � Γk1 � t � nTs � τlt �)� n � t � (5)

with n � t � the filtered version of w � t � .

The loop error signal can be decomposed into the con-
ditional expectation E " e � l ��m �+** θ̂l �m � & and a zero-mean distur-

bance N � l ��m � . The first term, called the S-curve, is a func-

tion of the phase error: E " e � l ��m � ** θ̂l �m � & � S , θl � θ̂l �m �.- and

the second term, called the loop noise, is defined as: N � l ��m � �
e � l ��m � � S , θl � θ̂l �m � - . The computation of the error signal ex-
pectation conditioned on fixed values of phase estimation
(θ̂l �m � � θ̂l) provides the expression of the S-curve for the
lth finger:

S � l � , θl � θ̂l - � Im " TsA2ρle j � θl � θ̂l � Γ11 � 0 � &� Im / TsA2 ∑
l1 0� l

ρl1e j � θl1 � θ̂l � Γ11 , τl � τl1 -�12 3(4 5
bias

(6)

Hence, depending on the delays and the coefficients of the
other paths, the output of the PED appears to be biased.

In the context of small fluctuations of the phase error, it is
possible to linearize the S-curve around its stable equilibrium
point [5]:

S � l � , θl � θ̂l - � D � l � 6, θl � θ̂l - � D � l � 6, θl � θleq - (7)

where D � l � is the slope of the S-curve at this point
and θleq is the stable equilibrium point. We recall that a
necessary condition for an equilibrium point � θleq � is that
S , θl � θleq - � 0.

The computation of the phase variance with the lin-
earized model described above [5] gives:

σ2
θl � 2BPTs

ΓN 7 l 8 � 0 �
D � l � 2 (8)

where ΓN 7 l 8 is the autocorrelation of the noise N � l � and BPTs is
the loop bandwidth. The phase variance is strongly affected
by the user interference and by the adjacent paths.

4. IMPROVEMENT OF THE PHASE LOOP

The conventional PED is well suited for a single path chan-
nel, but in the context of a multipath channel, we have seen
that the output of the PED is badly influenced by the addi-
tional paths. Moreover the presence of other users have a
significant impact on the performance of the loop in term of
variance. So we propose in this section a new version of the
PED which is better suited for a multi-user system with a
multipath channel. The improvement is based on the con-
cept of prefiltering. We insert a prefilter of finite impulse
response, p � i � , i � � N � �� � N, in the phase loop as illustrated
in Fig 1. The prefilter works at a rate of two samples per
chip in entrance. The following notation will be used in this
section:

f̃ � t � � ∑N
i � � N p � i � f � t � i Tc

2 � (9)

where f represents any desired function.
The purpose of such a prefilter is to correct the shape

of the correlation Γ11 in (6) so as to force it to zero at the
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locations of adjacent paths:

Re 9 Γ̃11 , τl � τl1 -�: � 0 l1 � 1 �� L � l1 ;� l
Im 9 Γ̃11 , τl � τl1 -�: � 0 l1 � 1 �� L � l1 ;� l

(10)

Thus, we make the S-curve independant of the other
paths but in order to cancel totally the bias, we need to
add the following constraint: Im 9 Γ̃11 � 0 � : � 0. We choose
the values of the prefilter coefficients that minimize the
phase variance under those constraints. In order to avoid
the zero solution, we add a constraint which normalizes
the slope of the S-curve at θl � θ̂l � 0. The next step is
the computation of the phase variance as a function of the
prefilter coefficients.

The new error signal with the prefilter can be expressed
as:

e � l ��m � � Im " e � jθ̂l # m $ â %1 �m � z̃1 � mTs � τl �'& (11)

Now, remembering that if θ̂l �m � � θleq , then e � l ��m � � N � l ��m � ;
the loop noise autocorrelation takes thus the form:

ΓN 7 l 8 � n � � E " e � l ��m � e � l � ��m � n � & (12)

By substituting (11) in the above expression and after
some calculations we obtain the expression of the loop noise
autocorrelation ΓN 7 l 8 for n � 0:

ΓN 7 l 8 � 0 � � 1
2 T 2

s A4 ∑L
l1 � 1 ρ2

l1 < ∑n1 0� 0 ** Γ̃11 � n1Ts � τl � τl1 � ** 2� ∑k 0� 1 ∑  ∞
n1 � � ∞ ** Γ̃k1 � n1Ts � τleq � τl1 � ** 2 = � 1

2 A2Γñ � 0 �
(13)

where

Γñ � i � � 2N0

N

∑
m � � N

N

∑
q � � N

Γ11 > � m � q � i � Tc

2 ? p �m � p % � q � (14)

is the expression of the autocorrelation of ñ � t � sampled at a
rate of two samples per chip.

We propose now to use matrix notations to perform the
minimization under constraints of the phase variance. Let us
define the following vectors:

p �A@ p � � N � �� p � N �CB T (15)

ul D l1
k D n �FEGH Γk1 � nTs � N Tc

2 � τl � τl1 �
...

Γk1 � nTs � N Tc
2 � τl � τl1 �

IKJL (16)

The expression of the phase variance given in (13) can be
written as a quadratic form:

ΓN 7 l 8 � 0 � � pH Γ p (17)

where Γ � ΓISI � ΓMAI � ΓT N is the matrix containing the
three disturbance terms, the intersymbol interferences, the
multiple access interferences and the thermal noise perturba-
tion. ΓISI and ΓMAI are defined as:

ΓISI � 1
2 T 2

s A4 ∑L
l1 � 1 ρ2

l1 ∑n 0� 0 ul D l1
1 D nul D l1H

1 D n
ΓMAI � 1

2 T 2
s A4 ∑L

l1 � 1 ρ2
l1 ∑K

k � 1 ∑n ul D l1
k D n ul D l1H

k D n (18)
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Figure 2: (a) correlation Γ11 before prefiltering (b) prefiltered
correlation Γ̃11

Now let us consider the following matrix: B �NM bmq O with

bmq � Γ11 > � m � q � Tc

2 ? (19)

The expression of ΓT N is given by: ΓT N � A2N0B.

For notation simplicity and without loss of generality, the
desired path is the first path: l � 1. Let C be the following
vector:

C � < � Re " pT u1 D 1
1 D 0 &P� 1

ρ1TsA2 � � Re " pT u1 D 2
1 D 0 &Q��

Re " pT u1 D L
1 D 0 & � Im " pT u1 D 1

1 D 0 &R�� Im " pT u1 D L
1 D 0 & = T (20)

The constraints may be expressed in the form:

C � 0 (21)

This problem of minimization under constraints may be
solved with the Lagrange-multiplier method. We form the
Lagrange combination:

F , p � λ - � 1
2

pH Γ p � CT λ (22)

where λ is the vector containing the Lagrange multipliers.
We compute the complex gradient of F with respect to p and
we find the values of p which make the gradient zero:

∇pF , p � λ - � Γ p � G λ � 0 (23)

where
G � < u1 D 1 �

1 D 0 �� u1 D L �
1 D 0 � ju1 D 1 �

1 D 0 �� ju1 D L �
1 D 0 = (24)

Substituting p by ��� Γ � 1G λ � in (21) yields the expression of
λ . We finally subsitute this expression in (23) and we obtain
the result:

p
opt � 1

TsA2ρ1
Γ � 1 G M � 11 (25)

where 1T �SM 1 � 0 �� � 0 O and:

M � EGGGGGGGGGGGGH
Re " u1 D 1

1 D 0Γ � 1G &
...

Re " u1 D L
1 D 0Γ � 1G &

Im " u1 D 1
1 D 0Γ � 1G &

...
Im " u1 D L

1 D 0Γ � 1G &

IKJJJJJJJJJJJJL (26)

907



-4 -3 -2 -1 0 1 2 3 4
-400

-200

0

200

400

-4 -3 -2 -1 0 1 2 3 4
-400

-200

0

200

400

( )1 1̂ ( )radθ θ−

( )(1)
1 1̂S θ θ−

Equilibrium point

Equilibrium point

(a)

(b)

Figure 3: (a) conventional PED S-curve (b) Improved PED
S-curve

5. NUMERICAL RESULTS

In this section, we present a numerical analysis of the results
obtained in the previous section. We use Hadamard codes of
length Q � 16 with a scrambling sequence. The chip shaping
filter is a square-root raised cosine with the roll-off factor of
0.22. The mobile speed is vm � 120Km

�
h, i.e. ∆ fd � 220Hz

with the transmission parameters given in introduction. We
choose second-order loops with a damping factor ζ � 0  7
and a natural frequency fn � 1KHz. Those loops are
suitable for a random Doppler of 220Hz but the simulations
are realized with a deterministic Doppler. We consider a
downlink communication with K � 5 users. Here, 4 paths
have been assumed at relative delays of 0 � 0  75Tc � 2  5Tc and
4  75Tc with powers of 0dB, � 0  9dB, � 4  9dB and � 8dB.
The prefilter has 11 coefficients (N � 5).

Fig 2 illustrates the effect of the prefilter on the real part
of the correlation Γ11. The current path is the first path. The
prefilter forces to zero the correlation at τ1 � τ2, τ1 � τ3 and
τ1 � τ4 (located by a ’*’ on the figure). The resulting S-curve
will not be distorded by the additional paths.

Fig 3 shows the S-curves of the conventional and the op-
timized PED for the first RAKE finger (l � 1). In the first
case, it is noted that the zero-crossing of the S-curve is not
situated at 0 (θ1 � θ1eq T � 0  5 rad). It results in a bias on the
estimated phase, due to the presence of the adjacent paths.
Fig 3(b) shows the S-curve of the optimized PED. The zero-
crossing is shifted at the origine, yielding a non-biased esti-
mation.

Fig 4 illustrates tracking performance of both structures
with a signal to noise ratio Eb

�
N0 � 20dB. The four paths

present a Doppler of 220Hz, 70Hz, � 80Hz and � 230Hz.
The tracked phases and the channel phases are shown for
each path for the conventional and the improved phase re-
covery loop in Fig 4(a) and Fig 4(b) respectively. In the
latter case, the improved loop is able to follow the channel
phases. The improved tracking loop outperforms the con-
ventional tracking loop.
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Figure 4: (a) Estimated phases with the conventional loop
(b) Estimated phases with the improved loop with a 11 coef-
ficient prefilter

6. CONCLUSION

In this paper, a new performant phase tracking technique
in downlink Time-Division CDMA system appropriate for
rapidly time-varying multipath channel is proposed. The new
structure is based on a conventional phase recovery loop, the
”remodulator loop”, in which a prefilter has been inserted. It
is explained how to design the optimum prefilter in order to
minimize the phase variance and to cancel the bias due to the
additional paths. An analytical solution is provided for calcu-
lating the prefilter coefficients. Linear analysis and computer
simulations have been employed to evaluate the performance
of the new tracking loop. The numerical results show that the
new tracking loop outperforms the conventional loop.
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