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ABSTRACT 

A new method of designing WLS optimal IIR filters is pro-
posed in this paper. The approach belongs to the emerging 
group of methods that search for the optimal filter parameters 
inside the spaces of significantly reduced dimensionalities. 
Efficient implementation of the proposed method is achieved 
by selecting suitable parameterisation of the filter’s transfer 
function and deriving numerical formulas for calculating the 
WLS cost and its derivatives with respect to the optimisation 
parameters. The filters can thus be designed using off-the-
shelf programmes tackling nonlinear optimisation problems 
with constraints. Owing to the reduction of the dimensional-
ity of the search space the proposed approach is more robust 
and provides more accurate results than the “fully blown” 
traditional techniques of designing IIR filters. 

1. INTRODUCTION 

Let the prototype transfer function of the filter be given by 
)()()( zAzBzG = , )(νH  be its required frequency re-

sponse and the nonnegative function )(νW  be the weight. 

The functions )(zB  and )(zA  are polynomials in 1−z  with 
tuneable coefficients. The objective of the Weighted Least 
Squares (WLS) filter design is to determine the coefficients 
of )(zB  and )(zA  so that the following cost is minimised. 
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The roots of )(zA  should stay inside the unit disc. Let aN  

and bN  be the degrees of )(zA  and )(zB  respectively. Tra-

ditionally, one has to search a space of 1++ ba NN  dimen-
sions to find the optimal solution to the above problem 
[1]-[6]. In this paper we consider an approach that is moti-
vated by the observation made in [6] that the search can be 
confined to an aN -dimensional space. This idea might be 
exploited in many ways leading thus to a selection of various 
algorithms for designing IIR filters. For example, in [6] the 
WISE [4] method was modified to form an algorithm of de-
signing filters in the reduced-dimensionality space. The at-
tractiveness of the method introduced in [6] is that it relies on 
solving an optimisation problem without constraints. Its dis-
advantage is that the calculation of the cost and its deriva-
tives could be time consuming. Moreover, it takes some ex-

perience to properly choose the weights for the main compo-
nents of the modified cost used by that method. In this paper 
we formulate an algorithm that directly minimises cost (1). 
Unlike WISE approach, the stability of the filter is achieved 
by imposing constraints on the coefficients of )(zA  rather 
than by modifying cost (1).  
To keep the paper self-contained we show how the problem 
of designing optimal filters can be solved by searching aN - 

rather than 1++ ba NN -dimensional space. Suitable formu-
las for analytical calculation and efficient numerical 
approximation of the cost and its derivatives are presented. 
These quantities are required by most of the off-the-shell 
optimisation functions. Finally the proposed algorithm is 
tested on a numerical example.  

2. REDUCTION OF SPACE DIMENSIONALITY IN 
DESIGN OF IIR FILTERS 

The problem of designing IIR WLS optimal filters whose 
denominator is fixed has a closed form solution. This can be 
justified as follows. Let )(zA  be the fixed denominator of 

the designed filter. We define )()( 2πνν j
f eAA = , 

)()( 2πνν j
f eBB =  and present )(νfB  in the following form  
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Cost (1) can thus be written as  
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We put cost (4) in a more concise form  
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  rJ TT +−= bnMbb 2 . (5) 

The vector of optimal coefficients of )(zB  is given by 

 nMb 1ˆ −=  (6) 

The minimum value of J  can thus be calculated by substi-
tuting (6) in (5): 

 nMn 1ˆ −−= TrJ  (7) 

Note that Ĵ  depends only on the coefficients of )(zA , which 
so far were assumed to be constant. The numerator of the 
transfer function )(zB  is now bundled in as an optimally 
chosen polynomial and does not affect the cost any more. 
Therefore, in order to design an optimal filter we need to 
minimise (7) with respect to the coefficients of )(zA . This 
optimisation problem can be solved by searching an 

aN -dimensional space.  

3. DESIGN OF OPTIMAL IIR FILTERS 

In this section we formulate a nonlinear optimisation prob-
lem with constraints whose solution yields the coefficients of 

)(zA . First we parameterise )(zA  as a product of 2aNL =  
second order polynomials. For simplicity we assume that 

)(zA  is of even degree. It is not difficult to expand the 

analysis to the cases when the degree of )(zA  is odd. 
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We demand that the roots of )(zA  are placed in )o(ρ  - a 
disc with radius 1<ρ  centred at the origin. Note that the 

roots of )(zD  belong to )o(ρ  if and only if all the roots of 

)( ρzD  are placed in the unit disc )1o( . Therefore )(zA  has 

all its roots inside )o(ρ  only when the following inequalities 
are satisfied  
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for Lr ,,1L= . The design of optimal IIR filter is now re-
duced to solving the following optimisation problem.  
 
Filter Design Problem 

Minimise Ĵ  defined by (7) with respect to 

LL aaaa 212111 L  subject to the constraints (9)-(11).  

Once the optimisation problem is solved we can use (8) to 
construct the denominator of the transfer function of the filter 
and (6) along with (2) to get its numerator.  

4. EFFICIENT CALCULATION OF THE COST AND 
ITS GRADIENT 

In order to numerically solve the optimisation problem it is 
important to find efficient ways of calculating cost (7) and its 
derivatives. This task is not trivial. As (4) shows the elements 
of matrix M  and vector n  require integrations. We did not 
derive the gradient of cost (7) yet but one may expect that the 
derivatives of (7) with respect to LL aaaa 212111 L  are  
even more complicated than (4). The observations below will 
help us to formulate efficient algorithms for calculating (7) 
and its derivatives.  
If )(νX  is a Hermitian-symmetric periodic function with 

period 1 then the samples of signal )(nx , whose spectrum is 

)(νX , can be calculated as follows 
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By approximating the second integral in (12) with summa-
tion we get 

 )(~1)(
21

0

nxe
N
mX

N
nx f

f
N
mnjN

m ff
=










≈ ∑

−

=

π
. (13) 

Note that (13) is the inverse DFT of )(νX . If the number of 

frequency points fN  is a power of 2, (13) can be efficiently 

calculated using inverse FFT. In some cases we may need to 
calculate )(nx  for negative values of n . Since inverse FFT 
does not yield such results we resolve the problem by noting 
that for real-valued )(νX  we have )(~)(~ nxnx =− . When,  

)(νX  is complex-valued then a more general formula can be 

used )(~)(~)( nNxnxnx f −=−≈− . In subsequent analyses 

we also exploit the fact that: 
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4.1 Numerical Calculation of Cost Ĵ  
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Since )(1 νS  is a real-valued function, it follows from (4), (5) 
and  (15) that M  is the following Toeplitz matrix 
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Similarly, vector n is given by 

 [ ])(,),1(),0( 222 bNsss L=n  (18) 

To summarise, in order to create matrix M  and vector n  we 
need, first, to use IFFT to get [ ])(,),0( 11 bNss L=m  and 

[ ])(,),0( 22 bNss L=n . Then M  can be formed using  
(17). Note that r  in (17) does not change with the filter pa-
rameters. Therefore, in most cases there is no need for an 
accurate estimate of its value. In fact from the point view of 
minimising (7) r  can be set to any number, e.g. 0=r . 

4.2 Numerical Calculation of the Gradient of Cost Ĵ  

The gradient of (7) is a vector consisting of 
kra
J

∂
∂
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It follows from (17)-(19) that the main numerical problem 
related to the calculation of the gradient of the cost is to ap-
proximate the derivatives of )(1 ns  and )(2 ns . Note that  
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and 
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We introduce polynomials )(zAr  defined by 
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Now we represent (20) as 
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We use (14) and (24) to rewrite (23) in the following form 
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The derivative of matrix M  in (19) is therefore a Toeplitz 
matrix generated by the vector 
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Note that we have used a simplified notation in (26). Instead 
of writing matrices of samples of signal )(3 ks  we used ma-
trices of time instants for which the samples of the signal are 
needed and put the name of the signal in the front of each 
matrix. 
The derivative of )(2 ns  with respect to kra , needed to form 
the second term of (19), can be generated as follows  
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This could be further processed using  
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5. NUMERICAL EXAMPLE 

The proposed approach to designing IIR filters has been 
tested numerically. The related optimisation problem has 
been solved using MATLAB optimisation toolbox function 
fmincon that tackles nonlinear optimisation problems with 
constraints. In order to use that function a programme calcu-
lating cost (7) and its gradient with respect to kra  has been 
written. The numerical algorithms presented in the previous 
section have been implemented.  
The filter prototype, target frequency response and the 
weight function used in this test are the same as those de-
fined in example 1 in [3]: 
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The structure of the filter is defined by 14== ba NN . We 

request that all the poles of the filter are placed in )o(ρ  
where 95.0=ρ . Note that the last specification has not 

been taken from [3] since the authors of [3] used a different 
mechanism of maintaining stability of the filter.  
Cost (1) calculated for the filter designed in [3] is 

00050.0=J . The filter designed with the method proposed 
here compares very favourably with [3] as the cost is about 
three times smaller 00016.0=J . Figure 1 shows the plots 
of the magnitude of the weighted frequency response errors 
of both filters. The method proposed in this paper clearly 
provides smaller errors for most of the frequencies. 

6. CONCLUSIONS 

A new method of designing IIR filters has been proposed in 
this paper. One of the main advantages of the method is that 
it allows the user to significantly reduce the dimensionality 
of the space within which the optimal parameters of the fil-
ter are looked for. This feature is particularly useful when 
designing “traditional” types of filters like: lowpass, high-
pass, bandstop etc. Experience shows [4] that in such cases 
the number of poles needed to achieve good filter perform-
ance can be significantly smaller than the number of zeros 
( ba NN << ). Such filters benefit most from the proposed 
approach. The method has been tested numerically and pro-
vided good quality results comparing favourably with those 
reported in the research literature. The tests have shown that 
the proposed design process is very robust and yields good 
approximations of the local minima. 
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Figure 1: Weighted errors of filter frequency responses for 
the method proposed in [3] (thin broken line) and for the 
method proposed here (thick continuous line). 
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