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ABSTRACT

Non destructive testing of materials is an open field for signal
processing applications. Bicepstrum analysis of the signal
can be employed and pulse reconstruction achieved. Some
simulations will be done in order to check the accuracy of this
technique. The general applicability will be illustrated with
ultrasonic signals coming from two different cement paste
blocks.

1. INTRODUCTION

The analysis of the signal obtained on an ultrasonic trans-
ducer when it travels through a dispersive material can give
us a lot of information about the inside of the material. The
modeling of this problem is a difficult task due to the effect of
selective attenuation of frequencies what leads to pulse dis-
tortion. A signal processing model of a time varying pulse
through a system that models the reflectivity is a good al-
ternative for the modeling of this kind of situations (see fig-
ure 1). There are many different alternatives to extract the
pulse shape at a given depth (slow distortion of the pulse
is assumed) among them we have selected bicepstrum tech-
niques. We will use this technique to compare between two
different cement paste specimens.
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Figure 1: A simple classification scheme based on higher
order statistics

The next section will give a brief resume of the theoret-
ical bicepstrum calculation. In section 3 some simulations
will be done in order to know the error when using bicep-
strum analysis. Finally in section 4 we illustrate this tech-
nique with with some real measures in cement paste speci-
mens.
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2. PULSE EXTRACTION THROUGH BICEPSTRUM
ESTIMATION

Let p(n,d) be the sampled ultrasonic pulse that would be
recorded at the location of the transducer from an isolated
scatterer located at depth d. We are going to work at a cer-
tain depth dy in the material, so that the pulse that we are
trying to extract will be p(n,do) = p4,(n). The hypothesis
that pulse does not change with depth, d for scatterers lo-
cated in a certain interval around d is going to be assumed
through all our work (slow depth varying pulse hypothesis).

Let Py, (z) be the transfer function of the ultrasonic pulse
Pd,(n) written as

Py (z) = Az "I(z"HO(2) (1)

where A4 is a constant, 7 is an integer, /(z~!) is the mini-
mum phase component and O(z) is the maximum phase com-
ponent.

If we assume that the LTI that models the reflectivity
of the material has an impulse response r(n) that can be
assumed to be a zero-mean non-Gaussian white i.i.d pro-
cess with skewness 5 (figure 1), then the output bispectrum

C;(z1,22) exist and is given by [1],

C}(z1,22) = VsPao(z1) Pao(22) Pao (21 ' 25 1) )

G, (z1,22) is the Z-Transform of C3 (T, T2).
According to [2] the bicepstrum is the inverse 2-D Z
transform of the log bicepstrum C§ (z1,22),

by(m,n) = Z, {In[C}(z1,22)]} 3)

An easy method for computing the cepstral coefficients
is based on two-dimensional FFT operations (see figure 2 for
an example of how bicepstrum looks like)):

Fz[m-m)g(m,n)]

m-by(m,n) = F5 '{ B[y (m,n)]

} 4)
where m} (m, n) is the third order moment of y, F[-] is the
2-D Fourier Transform and £, '[-] itts inverse. The size of the

region of support of 7>[-] or F, '[-] should be chosen greater
or equal to 2 - max|p,q| where,

p=In(c)/In(a) (5)
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a and ¢ are the maximum (in modulus) cero and pole of
the minimum phase component. b is the maximum (in mod-
ulus) cero of the maximum phase component.

m Ebh(m,n)

0.5

Figure 2: An example of obtaining bicepstrum through equa-
tion (4). Note that bicepstrum on the vertical straight line
does not appear due to the product -m.

It is accomplished that the bicepstrum is the complex
cepstrum of y(¢) along three straight lines, and zero else-
where.

Cy(m) :by(mao) :by(oam) :by(_ma_m)7m7é0 (6)

all of this can be used to recover the complex cepstrum
as well as cepstral parameters which contain minimum and
maximum phase information. The pulse shape, without min-
imum phase assumption, can then be extracted. The only
ambiguity that can not be recovered using this method deals
with an scale factor. Complex cepstrum at the origin ¢, (m) =
In(|A|),m = 0 can not be recovered due to the method of
computing bicepstrum on equation (4).

3. SIMULATIONS

The following simulation will show how with a small number
of points pretty good reconstruction of the ultrasonic pulse
can be achieved. The reflectivity is going to be modeled with
zero-mean exponential white i.i.d noise with unit skewness.
The selected region for pulse extraction is going to be of 256
points. The pulse convolved with the reflectivity is mod-
eled as the impulse response of a nonminimum phase system
Py4,(z), and only 30 points of this signal will be extracted.

_ (z—0.9)-(1-1.52-240.617-2%)
Fa®) = =086 Z==7 001 M

According to equation (4) and (6) complex cepstrum can
be obtained from horizontal and diagonal straight lines. De-
tailed analysis of estimators coming from horizontal and di-
agonal lines show that variance depends on the algorithm
used to estimate and from the pulse that we are trying to es-
timate itself. There is no a priori knowledge of which one
will give us the lowest variance estimates, simulations for

different reflectivity models have been done (see table 1).
Using the results of the table 1, we propose the estimation of
the |Py, (w)| using the diagonal slice of the bicepstrum. For
the estimation of /P, (w) we will use the averaged estimates
from horizontal and diagonal slices.

Exponential reflectivity
Estimator (slice) | Max. modulus std | Max.phase std
Horizontal 1.34 1.81
Diagonal 0.46 1.86
Horiz. + Diag. 0.77 1.02
Rayleigh reflectivity
Estimator (slice) | Max. modulus std | Max.phase std
Horizontal 1.74 1.42
Diagonal 0.55 1.68
Horiz. + Diag. 0.91 1.00

Table 1: Maximum standard deviation through estimates
from the three bicepstrum slices (Standard deviation ob-
tained through 100 Monte Carlo runs)

As an example figures (3) and (4) show comparison be-
tween theoretical pulse and recovered pulse using the pro-
posed bicepstrum method. Figures also show an indication
of how variance should look like on the worst case.
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Figure 3: Recovered pulse py,(n). Theoretic solid line,
dashed line estimated through 25 Monte Carlo runs

4. AN APPLICATION TO PULSE EXTRACTION ON
CEMENT PROBES

We have selected cement paste as material to check the es-
timation feasibility of ultrasonic pulse at a given depth d.
Cement paste can be considered as hydrated gel matrix and
pore cavities not occupied by gel. There are several types of
pores, among them capillary porosity mainly determines the
total porosity and also the quality of the cement paste. The
porosity of the final material can be controlled by means of
the water/cement ratio of the mixture [3, 4]. If an adequate
ultrasonic frequency is chosen (A comparable to pore diame-
ter) the pore structure acts as reflectors resembling the model
of figure (1).

Two different cement paste blocks have been chosen first
one is made of CEM II-Al 32.5 with a water cement ratio of
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Figure 4: Recovered pulse Py (w). Theoretic solid line,
dashed line maximum/minimum variance values obtained
through 25 Monte Carlo runs

0.4. Second one is made of CEM II-Al 42.5 with a water ce-
ment ratio of 0.5. Nondestructive measures have been made
on these blocks with an ultrasonic PC board IPR-100 (Phys-
ical Acoustics) with 400 V of attack voltage and 55 dB in
the receiver amplifier. The transducer frequency was chosen
to be 10MHz (MSWQCI10 transducer from Krautkramer &
Branson). Received signal was acquired with the Tektronix
3000 oscilloscope (f;=250 MSamples/s).

After that, destructive measurements have been made on
the cement paste specimens giving porosities of 30.73 % for
the 32.5 specimen and 36.65 % for the 42.5 specimen.

Pulse extraction has been made following algorithm de-
scribed in section 3. Third order moment estimates have been
made using method described in [5] (asymptotically unbi-
ased estimator) with records of 256 points. We have averaged
10 of these estimates to obtain the final third order moment
estimate. The frequency response has been finally obtained
from the relationship /n[P,, (w)] = F|c;(n)] where F[.] is the
1-D Fourier Transform. Results are plotted in the figure 5
where it can be seen that higher porosity results in a larger
bandwidth pulse at the same depth (1600 points). Differ-
ences can also be seen in the phase of Py, (w) and used for
material classification.

In order to show the distortion of the pulse as it travels
through the material we have obtained the pulse at two differ-
ent depths: 1600 samples and 2800 samples. Figure 6 shows
the results for specimen 42.5 (similar results where obtained
for the 32.5 specimen). Central frequencies of the two pulses
have been also measured giving 9.94 MHz at depth 1600
samples and 8.68 MHz at depth 2800 samples. The figure
6 shows more detailed evolution of the pulse with depth.

5. CONCLUSIONS

We have seen the applicability of bicepstrum for non-
destructive testing of materials. With this idea we are capa-
ble of obtaining the pulse (without minimum phase assump-
tion) that will be later used for many applications: classifi-
cation, parameter extraction, etc. With difference to some
other techniques recovered phase could also be of interest in
classification purposes.
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Figure 5: Pulse estimates on two different cement paste
blocks at 1600 points depth
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Figure 6: Pulse estimates on a cement block at 1600 points
depth and 2800 points depth

Absolute amplitude of the pulse is lost, so this technique
will not be valid if we are concerned on this fact. On the other
hand very small a priori knowledge of the pulse is required
to obtain quality estimates.

Results obtained seem to fit quite well what we expected
from the ultrasonic signals. This indicates that ultrasonic
pulse traveling through this kind of material can be modeled
this way.
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