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ABSTRACT

A new pilot tone placing and pilot sequence design is proposed
to compensate the carrier frequency offset (CFO) in OFDM sys-
tems. Unlike the conventional approach where isolated pilot tones
are used, in this paper every two pilot tones are clustered as a group
and these groups are equally spaced. The pilot sequence is carefully
designed, of which the left hand sided pilot symbol in each cluster is
antipodal with the right hand sided one. The performance in terms
of the pilot channel interference ratio (CIR) can be significantly im-
proved by the proposed pilot scheme. Theoretical analysis shows
that the clustered pilot tones can give a substantially lower CFO
variance than that of the isolated pilot tones. Simulation results are
presented to verify our newly proposed theory.

1. INTRODUCTION

Inter-channel Interference (ICI) induced by the carrier frequency
offset (CFO) will lead to the loss of orthogonality of the subcarri-
ers in OFDM receiver and thus severely degrade the performance
of reception in terms of bit error rate (BER) [1]. Generally speak-
ing, there are two approaches of tackling this problem. The first
one is the self-ICI cancellation method that transmits antipodal data
symbols in pairs of subcarriers by taking into the consideration that
there is relatively little change of ICI effect in adjacent subcarriers
[2]. This method can reduce the ICI significantly but in the expense
of one half of the bandwidth efficiency being lost. The other method
utilizes a few of the isolated pilot tones (subcarriers) that are scat-
tered over the entire spectrum to estimate the CFO and rectify the
received signal from the feedback of the estimates [3, 4]. It is obvi-
ous that CFO estimation is vital for subsequent CFO compensation.
The ICI and other undesirable noise that affect the pilot tones will
inevitably degrade the performance of the estimation.

In this paper, a clustered pilot tone pattern is proposed, which
combines the merits of the above existing two methods. By placing
the antipodal pilot symbols in each tone pair, the ICI and noise for
the pilot tone can be greatly decreased and thus resulting in a higher
pilot CIR. From the analysis of the variance of the CFO estimate,
it is known that the variance is inversely proportional to the CIR.
Consequently, it will lead to a better and robust estimate in terms of
estimation variance and block length.

This paper is organized as follows. In Section 2, the ICI anal-
ysis of a conventional OFDM system is given. The typical isolated
pilot tone for CFO estimation is described in Section 3. The clus-
tered pilot tone method is proposed in Section 4. The variance of
CFO estimate under noisy environment is derived in Section 5. Sim-
ulation results are shown and discussed in Section 6. Finally the
conclusion is given in Section 7.

2. OFDM ICI ANALYSIS

In an OFDM receiver, the received signal is mixed with a local os-
cillator signal which is ∆ f above the carrier frequency fc. Ignoring
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the effects of noise, after removing the cyclic prefix and taking the
N point DFT of the signal, the demodulated symbol at the mth sub-
carrier of the ith OFDM symbol is given by [4]

zm,i = exp( j(θ0 +(i−1)φ))
N−1

∑
l=0

cl−mal,i (1)

where, the weighting coefficients, cl−m, is given by

cl−m =
1
N

N−1

∑
k=0

exp
(

j2πk(l−m+∆ f T )
N

)

=
1
N

sin(π(l−m+∆ f T ))

sin(π(l−m+∆ f T )
N )

× exp

(
jπ(

N −1
N

)(l−m+∆ f T )
)

(2)

and al,i denotes the QPSK symbol transmitted from the lth subcar-
rier of the ith OFDM symbol. θ0 is the phase rotation between the
phase of the receiver local oscillator and the carrier phase at the
begining of the received signal. T is the effective duration of one
OFDM symbol excluding the guard interval G. φ = 2πε(1+G/N)
is the phase rotation induced by the CFO and the normalized CFO
ε = ∆ f T = ∆ f / fsub. |ε|< 0.5 and fsub denotes the subcarrier spac-
ing.

It can be seen that the decoded complex value zm,i consists of
a desired component due to am,i as well as other terms due to the
interferences. Here,

zm,i = exp( j(θ0 +(i−1)φ))(c0am,i +um,i) (3)

where

um,i =
N−1

∑
l=0,l �=m

cl−mal,i (4)

is the ICI for the mth subchannel and c0 = sinc(∆ f T ).
Fig.1 shows the complex weighting coefficients

c−N+1 · · ·c0 · · ·cN−1 for the case of ∆ f T = 0.1 and N = 16.
It demonstrates that both real and imaginary parts of the coeffi-
cients are gradually changed with respect to the subcarrier index
except several coefficients around the zero subcarrier offset.

Fig. 2 shows the magnitude of the adjacent weighting coeffi-
cients for different subcarrier offsets. The comparison illustrates
that the first and second order difference of the coefficients can
greatly reduce most of the interference power. This property has
been used in [2] to cancel the ICI by transmitting antipodal data
symbols at each pair of subcarriers while sacrificing one half of the
bandwidth.

3. TYPICAL PILOT TONES FOR CFO ESTIMATION

One method of compensating the carrier frequency offset is to esti-
mate the CFO from a few of isolated pilot tones embedding in the

901



−15 −10 −5 0 5 10 15

−0.2

0

0.2

0.4

0.6

0.8

N=16   ∆fT=0.1

subcarrier offset

w
ei

gh
tin

g 
fa

ct
or

real part
imag part
magnitude

Figure 1: Real and imaginary components of the complex weighting
coefficients
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Figure 2: Magnitude of difference of adjacent coefficients vs. sub-
carrier offset for ∆ f T = 0.1

received stream. Once the offset value is estimated, it will be sent
back to the front end of the receiver to correct the received signal.
From (3), it can be seen that each demodulated symbol is corrupted
by ICI from all other subchannels.

Assume that the mth subcarrier is one of the pilot tones which is
scattered over the entire spectrum, the demodulated symbol of this
tone in the (i+1)th OFDM symbol is given by

zm,i+1 = exp( j(θ0 + iφ))(c0am,i+1 +um,i+1). (5)

Using only the mth pilot tone, an unbiased estimate of the CFO is
constructed from a block of L symbols as [3, 5],

ε̂m =
1

2π(1+G/N)
arctan

Im∑L−1
i=1 z∗m,izm,i+1

Re∑L−1
i=1 z∗m,izm,i+1

(6)

Taking account into all the pilot tones, ε̄ = 1
P ∑P

m=1 ε̂m , where P
denotes the total number of pilot tones.

From (6), it is seen that the performance of the CFO estimate
is dependent on the pulse pair z∗m,izm,i+1. Consider a slow fading
environment, the variance of the phase estimate from the pulse pairs
is given by [6]

var(φ) =
1

(L−1)2

(
1

CIR
+

L−1
2

1
CIR2

)
(7)

where CIR denotes the pilot channel interference ratio and has

CIR =
|c0|2

∑N−1
l=1 |cl |2

(8)

The variance of the CFO estimate shows that it is inversely pro-
portional to the CIR of pilot tone. Thus it can be lowered by reduc-
ing the ICI on the pilot tone. To this end, the new pilot tone based
CFO estimation method is provided in the following section.

4. CLUSTERED PILOT TONES

4.1 Clustered Pilot Tone Design

Unlike the conventional approach, in this paper, the pilot tones are
organized into pairs/clusters. In each pair/cluster, the adjacent pilot
symbols to be transmitted are always set to be antipodal. That is, a
is transmitted at the left pilot tone and −a at the right pilot tone in
each cluster. This results in cancellation of most of the ICI in the
received pilot symbols.

Since am,i = −am+1,i for m ∈ Sl , the decoded value for the left
pilot tone at the mth carrier is given by

zm,i = exp( j(θ0 +(i−1)φ))[(c0 −c1)am,i

+ ∑
l∈Sl ,l �=m

(cl−m −cl−m+1)al,i + ∑
l /∈S

cl−mal,i]

where Sl and S denote the set of left pilot tones and of all pilot tones,
respectively. Similarly, the decoded symbol at the right adjacent
pilot tone is given by

zm+1,i = exp( j(θ0 +(i−1)φ))[(c−1 −c0)am,i

+ ∑
l∈Sl ,l �=m

(cl−m−1 −cl−m)al,i + ∑
l /∈S

cl−m−1al,i]

Next the values for the clustered pilot tones should be sub-
tracted in pairs. It further reduces the ICI

Zm,i = zm,i − zm+1,i

= exp( j(θ0 +(i−1)φ))[(2c0 −c1 −c−1)am,i

+ ∑
l∈Sl ,l �=m

(2cl−m −cl−m+1 −cl−m−1)al,i

+ ∑
l /∈S

(cl−m −cl−m−1)al,i] (9)

Substituting (9) into (6), an estimate for the normalized CFO
can be obtained.

4.2 Pilot Sequence Design

The goal of pilot sequence design is to minimize the variance of the
phase estimate. The phase variance of the clustered pilot tones with
unknown pilot symbols is of the form

var(φ) = E
[

1
(L−1)2

(
1

CIRm
+

L−1
2

1
CIR2

m

)]
(10)

where CIRm denotes the mth pilot channel interference ratio.
For the clustered pilot tones, the signal power for Zm,i is

E(|Cm|2) = |2c0 −c1 −c−1|2|am,i|2 (11)

Since the data symbol is a zero mean random process and indepen-
dent to the pilot symbol, the ICI power for Zm,i is given by

E(|Im|2) = | ∑
l∈Sl ,l �=0

(2cl −cl+1 −cl−1)al,i|2

+ ∑
l /∈S

|cl −cl−1|2 (12)
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Figure 3: Pilot CIR versus frequency offset

It is shown in Fig. 2 that |2cl − cl+1 − cl−1|2 � |cl − cl−1|2 for
any l ∈ Sl and l �= 0, so (12) can be further reduced to E(|Im|2) =
∑l /∈S |cl −cl−1|2. Therefore, the CIR of the mth clustered pilot tones
yields

CIRm =
|2c0 −c1 −c−1|2|am,i|2

∑l /∈S |cl −cl−1|2

Examining (10), the variance is a quadratic form of the inverse
of the CIRm and can be approximated into linear form by discarding
the second order term when CIRm is very large. After the approxi-
mation, the minimization of the variance is equivalently

min{E(
1

CIRm
)} ≡ min{E(

1
|am,i|2

)} (13)

The suboptimum pilot sequence are obtained when (13) is satisfied
and subject to the power constraint, ∑m∈Sl

|am,i|2 = Ep/2 , where
Ep is the total pilot power in one OFDM symbol.

It is found that such suboptimum sequence should be the se-
quence with equal magnitude for each symbol [7]. Assume that the
total pilot power equals the total number of pilots, the CIR for the
clustered pilot tone with such unit magnitude sequence is equal to

CIRc =
|2c0 −c1 −c−1|2
∑l /∈S |cl −cl−1|2

(14)

One such suboptimal sequence is the pseudo random binary se-
quence (PRBS), the other one for the simple design of the OFDM
system is the uniform sequence that transmits uniformly ”1” at the
left pilot tone and ”-1” at the right one in each cluster.

Fig.3 shows the CIR (in dB) as a function of the normalized fre-
quency offset, where N = 64. The comparison validates the higher
CIR of the clustered pilot tones due to the self-ICI cancellation than
that of the isolated pilot tones for CFO estimation. It also demon-
strates the close equivalence of the CIR between using the random
binary sequence and the uniform {1,−1} for the clustered pilot tone
methods. The improvement in CIR by the proposed method seems
to be independent of CFO and shows a gain of about 13.7dB.

5. VARIANCE OF CFO ESTIMATE IN AWGN

When AWGN is considered, the demodulated symbols at the mth
pilot tone of the ith OFDM symbol can be denoted by

zm,i = exp( j(θ0 +(i−1)φ))(c0am,i +um,i +nm,i)

where um,i is the ICI given by (4) and nm,i is the zero mean AWGN
whose real part and imaginary part have the same variance of σ2

n .
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Figure 4: RMS of CFO estimate versus CFO (L = 2)

Considering (7), the variance of the phase estimate can be similarly
given by

var(φ) =
λ + L−1

2 λ 2

(L−1)2 (15)

where λ = 1
CIR + 1

SNR . The CIR is given by (8) and SNR is defined
as

SNR =
|c0|2
2σ2

n
(16)

Similarly, for the case of clustered pilot tones the phase of vari-
ance is given by

var(φc) =
λc + L−1

2 λ 2
c

(L−1)2 (17)

where λc = 1
CIRc

+ 1
SNRc

The CIRc is given by (14) and SNRc is
defined as

SNRc =
|2c0 −c1 −c−1|2

4σ2
n

(18)

Comparing (18) with (16), it will result in the approximation,
SNRc ≈ 2 ·SNR. If SNR is high enough and CFO can be neglected,
then it will give

var(φc) ≈ 0.5 · var(φs) (19)

where the subscript c and s denotes the method of clustered pilot
tone and isolated pilot tone used in the CFO estimation, respec-
tively.

From Fig. 3, it is known that CIRc ≈ 23.4 ·CIRs. If noise can
be neglected and CFO is small, it will produce

var(φc) ≈ 0.04 · var(φs) (20)

6. SIMULATION RESULTS

From (15) and Fig. 3, it can be seen that the accuracy of the CFO
estimate is affected by three factors: the normalized CFO ∆ f T , the
block length L and the signal-to-noise ratio SNR. Next, simulations
of CFO estimation on the three factors are performed, respectively,
to illustrate the efficiency of the proposed method and compare with
the square root of the variance.

6.1 Effect of ∆ f T

Simulation results of root mean square (RMS) error of CFO esti-
mate are shown in Fig. 4 with respect to the frequency offset. It is
clear that the RMS errors for both methods are increasingly propor-
tional to the CFO. Moreover, the RMS error of the clustered pilot
tone is always 1/5 of the isolated pilot tone and thereby confirms
the analysis in (20).
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6.2 Effect of L

The effect of block length for the CFO estimation is depicted in Fig.
5.It is clear that the estimation variance decreases with an increasing
block length and the clustered pilot tone always gives a smaller vari-
ance than the isolated pilot tone irrespectively to the block length.
For example, when L = 2 the variance from the clustered pilot tone
is only 4% of that from the isolated pilot tone. It will be extremely
useful for fast CFO estimation which is so required in real applica-
tions.

6.3 Effect of SNR

The comparison of RMS error of the estimate between both meth-
ods are illustrated with respect to the SNR for the normalized fre-
quency offset of 0.01 and 0, in Fig. 6 and Fig. 7, respectively. The
error floor of the CFO estimate in the case of isolated pilot tone
shown in Fig. 6 tends to be higher than that in the clustered pilot
tone. Fig. 7 confirms the conclusion of (19) in which the clustered
pilot tone method can reduce the 3dB noise as compared with the
isolated pilot tone method.

7. CONCLUSION

A new pilot tone based CFO estimation method is proposed by
transmitting the antipodal pilot symbols at the clustered pilot tones.
Thus the ICI at pilot tone can be cancelled greatly and lead to a
higher CIR. Through the analysis of the CFO variance, the higher
CIR consequently results in a lower variance. Simulation results
demonstrate the efficacy of the proposed method which gives a ro-
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Figure 7: RMS of CFO estimate versus SNR (L = 4, ε = 0)

bust estimate even under noise environments.
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